\(\sqrt{xy}\)=3

\(\sqrt{x+1}+\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)

pt đầu suy ra  \(\sqrt{x+3}=2\sqrt{y-1}\)

pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)

Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1

\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)

\(8\sqrt{y+1}+3y-21=0\)

Đặt \(\sqrt{y+1}=t\)

=> y = t2 - 1

=> 8t + 3(t2 -1) -21 =0

3t2 + 8t - 24 = 0

=> t = ...

=> y = t2 - 1

=> \(\sqrt{x+3}=2\sqrt{y-1}\)

=> x =...

b) Trừ hai pt cho nhau ta có:

x2 - y2 = 3(y - x)

(x - y) (x + y + 3) = 0

=> x = y hoặc x + y + 3 = 0

Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm

 

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Lời giải:

ĐKXĐ: \(x>0,y\geq 0\)

Đặt \(x=a,\sqrt{xy}=b\). Nhân hai vế của PT $(2)$ với \(x\sqrt{x}\) ta có:

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} b^2+b+1=a\\ b^3+1=a+3ab\end{matrix}\right.\Rightarrow b^3+1=b^2+b+1+3ab\)

\(\Rightarrow b^3+1=b^2+b+1+3ab\Leftrightarrow b(b^2-b-1-3a)=0\)

TH1: \(b=0\Rightarrow \sqrt{xy}=0\). Vì $x\neq 0$ nên $y=0$. Thay vào PT $(1)$ suy ra $x=1$. Thử lại thỏa mãn

Ta có bộ $(x,y)=(1,0)$

TH2: \(b^2-b-1-3a=0\). Kết hợp với \(b^2+b+1=a\Rightarrow 3(b^2+b+1)-(b^2-b-1)=0\)

\(\Leftrightarrow b^2+2b+2=(b+1)^2+1=0(\text{vl})\)

Vậy HPT có nghiệm $(x,y)=(1,0)$

5 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)

\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)

cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ

suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý

vậy pt vô nghiệm

5 tháng 1 2016

Bình phương 2 vế phương trình (2) ta được

\(pt(2)\Leftrightarrow x+y+2\sqrt{x+y+xy+1}-2=0\)

Đặt \(t=\sqrt{xy}\Rightarrow x+y=t+3\), thay vào biểu thức trên ta có

\(t+2\sqrt{t^2+t+4}-2=0\Leftrightarrow 2\sqrt{t^2+t+4}=2-t\)

Bình phương giải ra t và từ đó suy ra x+y và xy, rồi nhận đc x và y nhé!

NV
28 tháng 6 2020

ĐKXĐ: \(x\ge1;y\ge\frac{1}{2}\)

\(x^3-y^3+\sqrt{x+y-1}-\sqrt{2y-1}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+y-1}+\sqrt{2y-1}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+\frac{1}{\sqrt{x+y-1}+\sqrt{2y-1}}\right)=0\)

\(\Leftrightarrow x=y\)

Thay xuống dưới:

\(5=x^2+\sqrt{x-1}\)

\(\Leftrightarrow x^2-4+\sqrt{x-1}-1=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\frac{x-2}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2+\frac{1}{\sqrt{x-1}+1}\right)=0\)

\(\Rightarrow x=2\Rightarrow y=2\)

8 tháng 10 2020

Ta có: \(\sqrt{8x-y+5}+\sqrt{x+y-1}=3\sqrt{x}+2\)

\(\Leftrightarrow8x-y+5+x+y-1+2\sqrt{\left(8x-y+5\right)\left(x+y-1\right)}=9x+12\sqrt{x}+4\)

\(\Leftrightarrow9x+4+2\sqrt{8x^2-y^2+7xy-3x+6y-5}=9x+4+12\sqrt{x}\)

\(\Leftrightarrow\sqrt{8x^2-y^2+7xy-3x+6y-5}=6\sqrt{x}\)

\(\Leftrightarrow8x^2-y^2+7xy-3x+6y-5=36x\)

\(\Leftrightarrow8x^2-y^2+7xy-39x+6y-5=0\)

\(\Leftrightarrow\left(8x^2+8xy-40x\right)-y^2-xy-5+x+6y=0\)

\(\Leftrightarrow8x\left(x+y-5\right)-\left(y^2+xy-5y\right)+\left(x+y-5\right)=0\)

\(\Leftrightarrow\left(x+y-5\right)\left(8x-y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5-x\\y=8x+1\end{cases}}\)

Thay vào pt dưới ta có:

\(\sqrt{xy}+\frac{1}{\sqrt{x}}=\sqrt{8x-y+5}\left(1\right)\)

+) với y=5-x (1) thành:

\(\sqrt{x\left(5-x\right)}+\frac{1}{\sqrt{x}}=\sqrt{8x-\left(5-x\right)+5}\)

\(\Leftrightarrow\sqrt{5x-x^2}+\frac{1}{\sqrt{x}}=\sqrt{9x}\)\(\Leftrightarrow\sqrt{5x^2-x^3}+1=3x\)\(\Leftrightarrow\sqrt{5x^2-x^3}=3x-1\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\5x^2-x^3=9x^2-6x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x^3+4x^2-6x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{3}\\x=1\left(tm\right)\end{cases}}}\)

Với x=1=>y=4

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

31 tháng 1 2020

Đề đúng là \(-\sqrt{xy}\) bạn nhé :v

Giải:

\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\left(1\right)\\\sqrt{x+1}+\sqrt{y+1}=4\left(2\right)\end{matrix}\right.\)

Điều kiện: \(\left\{{}\begin{matrix}xy\ge0\\x\ge-1\\y\ge-1\end{matrix}\right.\). Đặt \(t=\sqrt{xy}\ge0\)

Ta có \(\left( 1 \right) \Leftrightarrow x + y = 3 + t\left( a \right) \)

Bình phương hai vế của (2) ta được:

\(\begin{array}{l} x + y + 2 + 2\sqrt {xy + x + y + 1} = 16\\ \Leftrightarrow 3 + t + 2 + 2\sqrt {{t^2} + t + 4} = 16\\ \Leftrightarrow 2\sqrt {{t^2} + t + 4} = 11 - t\\ \Leftrightarrow \left\{ \begin{array}{l} 0 \le t \le 11\\ 4\left( {{t^2} + t + 4} \right) = {\left( {11 - t} \right)^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 0 \le t \le 11\\ 3{t^2} + 26t - 105 = 0 \end{array} \right. \Leftrightarrow t = 3 \Leftrightarrow xy = 9\left( b \right) \end{array} \)

Từ (a) và (b) ta được hệ \(\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)

Ngoài ra, có thể đặt S = x + y, P = xy, đưa về hệ theo S và P

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$4^2=(\sqrt{x+1}+\sqrt{y+1})^2\leq (x+1+y+1)(1+1)$

$\Rightarrow x+y\geq 6$

Mà từ PT $(1)\Rightarrow x+y=3-\sqrt{xy}\leq 3$

Do đó vô lý nên HPT đã cho vô nghiệm.