K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2}-\dfrac{x}{7}=\dfrac{1}{y-3}\)

=>\(\dfrac{x}{7}+\dfrac{1}{y-3}=\dfrac{1}{2}\)

=>\(\dfrac{x\left(y-3\right)+7}{7\left(y-3\right)}=\dfrac{1}{2}\)

=>\(2\left(xy-3x+7\right)=7\left(y-3\right)\)

=>\(2xy-6x+14=7y-21\)

=>\(2xy-6x-7y=-35\)

=>\(2x\left(y-3\right)-7y+21=-14\)

=>\(\left(2x-7\right)\left(y-3\right)=-14\)

mà 2x-7 lẻ

nên \(\left(2x-7\right)\left(y-3\right)=1\cdot\left(-14\right)=\left(-1\right)\cdot14=7\cdot\left(-2\right)=\left(-7\right)\cdot2\)

=>\(\left(2x-7;y-3\right)\in\left\{\left(1;-14\right);\left(-1;14\right);\left(7;-2\right);\left(-7;2\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(4;-11\right);\left(3;17\right);\left(7;1\right);\left(0;5\right)\right\}\)

28 tháng 4 2017

a) \(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{x+y}{2+3}\)

\(\dfrac{x}{2}=\dfrac{x+y}{2+3}-\dfrac{y}{3}\)

\(\dfrac{x}{2}=\dfrac{x+y}{5}-\dfrac{y}{3}\)

\(\dfrac{x}{2}=\dfrac{3\left(x+y\right)}{15}-\dfrac{5y}{15}\)

\(\dfrac{x}{2}=\dfrac{3x-2y}{15}\)

\(\Rightarrow15x=2\left(3x-2y\right)\)

\(15x=6x-4y\)

\(15x-6x=4y\)

\(9x=4y\)

(CÒN LẠI MÌNH KHÔNG BIẾT LÀM)

b) \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)

\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{4}{y}\\ \)

\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{20}{5y}\)

\(\dfrac{x}{3}=\dfrac{1+4}{y+1}\)

\(\Rightarrow x\left(y+1\right)=15\)

(CÒN NHIÊU TỰ LÀM NHÉ)

b: \(\Leftrightarrow x-10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)

=>x=3/11+20/55=3/11+4/11=7/11

c: \(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-2}{98}-1\right)+\left(\dfrac{x-5}{95}-1\right)=\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{95}\)

\(\Leftrightarrow x-100=1\)

hay x=101

1. Giải thích tại sao các p/s sau đây bằng nhau: a) \(\dfrac{-21}{28}=\dfrac{-39}{52}\) b) \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\) 2. Có thể có phân số \(\dfrac{a}{b}\)(a,b là số nguyên, b khác 0) sao cho : \(\dfrac{a}{b}=\dfrac{a.m}{b.n}\)(m,n là số nguyên ; m,n khác 0 và m khác n) hay không ? 3.Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\)là phân số tối giản (n là số tự nhiên) 4.Cộng cả tử và...
Đọc tiếp

1. Giải thích tại sao các p/s sau đây bằng nhau:
a) \(\dfrac{-21}{28}=\dfrac{-39}{52}\) b) \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)
2. Có thể có phân số \(\dfrac{a}{b}\)(a,b là số nguyên, b khác 0) sao cho :
\(\dfrac{a}{b}=\dfrac{a.m}{b.n}\)(m,n là số nguyên ; m,n khác 0 và m khác n) hay không ?
3.Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\)là phân số tối giản (n là số tự nhiên)
4.Cộng cả tử và mẫu của \(\dfrac{23}{40}\)với cùng một STN n rồi rút gọn, ta được \(\dfrac{3}{4}\). Tìm số n
5.Tìm phân số có mẫu bằng 7, biết rằng khi cộng tử với 26, nhân mẫu với 5 thì giá trị của phân số đó không thay đổi
6.Cho S=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
Hãy so sánh S và \(\dfrac{1}{2}\)
7. Tính nhanh
M=\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
8. Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
9. So sánh : A=\(\dfrac{10^8+2}{10^8-1}\); B=\(\dfrac{10^8}{10^8-3}\)

Giúp vs ~ leuleu

4
8 tháng 5 2017

1)

a)

\(\dfrac{-21}{28}=\dfrac{\left(-21\right):7}{28:7}=\dfrac{-3}{4}\\ \dfrac{-39}{52}=\dfrac{\left(-39\right):13}{52:13}=\dfrac{-3}{4}\)

\(\dfrac{-3}{4}=\dfrac{-3}{4}\) nên \(\dfrac{-21}{28}=\dfrac{-39}{52}\)

b)

\(\dfrac{-1717}{2323}=\dfrac{\left(-17\right)\cdot101}{23\cdot101}=\dfrac{-17}{23}\\ \dfrac{-171717}{232323}=\dfrac{\left(-17\right)\cdot10101}{23\cdot10101}=\dfrac{-17}{23}\)

\(\dfrac{-17}{23}=\dfrac{-17}{23}\) nên \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)

8 tháng 5 2017

2)

Theo tính chất cơ bản của phân số ta có: \(\dfrac{a}{b}=\dfrac{a\cdot m}{b\cdot m}\)\(m\ne n\)

nên không thể.

Trường hợp duy nhất là khi \(a=0\)

Khi đó: \(\dfrac{a}{b}=\dfrac{0}{b}=\dfrac{0\cdot m}{b\cdot n}=\dfrac{0}{b\cdot n}=0\)

3)

Gọi ƯCLN\(\left(12n+1,30n+2\right)\)\(d\)

Ta có:

\(12n+1⋮d\\ \Rightarrow5\cdot\left(12n+1\right)⋮d\left(1\right)\\ \Leftrightarrow60n+5⋮d\\ 30n+2⋮d\\ \Rightarrow2\cdot\left(30n+2\right)⋮d\\ \Leftrightarrow60n+4⋮d\left(2\right)\)

Từ (1) và (2) ta có:

\(\left(60n+5\right)-\left(60n+4\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d=1\)

Vậy ƯCLN\(\left(12n+1,30n+2\right)=1\)

Mà hai số có ƯCLN = 1 thì hai số đó nguyên tố cùng nhau và không có ước chung nào khác

\(\Rightarrow\dfrac{12n+1}{30n+2}\)tối giản

28 tháng 4 2017

Bài 1:

a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\left(\dfrac{9}{24}+\dfrac{-18}{24}+\dfrac{14}{24}\right):\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{5}{24}:\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{5}{24}.\dfrac{6}{5}+\dfrac{1}{2}\)

\(=\dfrac{1}{4}+\dfrac{1}{2}\)

\(=\dfrac{1}{4}+\dfrac{2}{4}\)

\(=\dfrac{3}{4}\)

b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)

\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)

\(=\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)

\(=\dfrac{1}{2}+\dfrac{4}{5}\)

\(=\dfrac{5}{10}+\dfrac{8}{10}\)

\(=\dfrac{9}{5}\)

c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{42}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{77}{12}.\dfrac{4}{11}+\dfrac{42}{4}.\left(\dfrac{5}{15}+\dfrac{3}{15}\right)\)

\(=\dfrac{7}{3}+\dfrac{42}{4}.\dfrac{8}{15}\)

\(=\dfrac{7}{3}+\dfrac{14.2}{1.3}\)

\(=\dfrac{7}{3}+\dfrac{28}{3}\)

\(=\dfrac{35}{3}\)

d) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)

\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{7}.12\dfrac{1}{4}\)

\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{7}.\dfrac{49}{4}\)

\(=\dfrac{1}{6}-\dfrac{7}{2}\)

\(=\dfrac{1}{6}-\dfrac{21}{6}\)

\(=\dfrac{-10}{3}\)

e) \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)

\(=\left(\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)

\(=\left(\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)

\(=1.\dfrac{8}{3}.\dfrac{1}{4}\)

\(=\dfrac{2}{3}\)

f) \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)

\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right).\dfrac{10}{11}\)

\(=\dfrac{5}{16}.\dfrac{8}{1}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right).\dfrac{10}{11}\)

\(=\dfrac{5}{2}-\dfrac{33}{20}.\dfrac{10}{11}\)

\(=\dfrac{5}{2}-\dfrac{3}{2}\)

\(=\dfrac{2}{2}=1\)

g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)

\(=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)

\(=\dfrac{1}{4}.\dfrac{2}{1}-\dfrac{3}{4}\)

\(=\dfrac{1}{2}-\dfrac{3}{4}\)

\(=\dfrac{2}{4}-\dfrac{3}{4}\)

\(=\dfrac{-1}{4}\)

h) \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)

\(=\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{1}{5}\right):\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right):\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\dfrac{3}{4}:\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\dfrac{9}{28}\)

\(=\dfrac{196}{140}-\dfrac{45}{140}\)

\(=\dfrac{151}{140}\)

i) \(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)

\(=\dfrac{\left(\dfrac{1}{1,25}\right).\left(\dfrac{1}{5}-\dfrac{2}{5}\right)}{\dfrac{5}{9}-\dfrac{13}{12}}\)

\(=\dfrac{\dfrac{1}{1,25}.\dfrac{-1}{5}}{\dfrac{20}{36}-\dfrac{39}{36}}\)

\(=\dfrac{\dfrac{-1}{6,25}}{\dfrac{-19}{36}}\)

k) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)

\(=\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{28}}{-\dfrac{3}{3}-\dfrac{3}{7}+\dfrac{3}{28}}\)

\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}{\left(-3\right)\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}\)

\(=-\dfrac{2}{3}\)

29 tháng 4 2017

\(A=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)

\(A=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)

\(A=\left(\dfrac{7}{10}.\dfrac{5}{28}\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).20\)

\(A=\dfrac{1}{8}.1.20\)

\(A=\dfrac{20}{8}=\dfrac{5}{2}\)

\(B=\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)

\(B=\left(9\dfrac{3}{8}+7\dfrac{5}{8}\right)+4,03\)

\(B=\left[\left(9+7\right)+\left(\dfrac{3}{8}+\dfrac{5}{8}\right)\right]+4,03\)

\(B=\left(16+1\right)+4,03\)

\(B=17+4,03\)

\(B=21,03\)

\(C=\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)

\(C=\left(\dfrac{39}{4}.\dfrac{150}{7}+\dfrac{39}{4}.\dfrac{130}{7}\right).\dfrac{15}{78}\)

\(C=\dfrac{39}{4}.\left(\dfrac{150}{7}+\dfrac{130}{7}\right).\dfrac{15}{78}\)

\(C=\dfrac{39}{4}.40.\dfrac{15}{78}\)

\(C=390.\dfrac{15}{78}\)

\(C=75\)

\(y+30\%y=-1,3\\ 130\%y=-1,3\\ \Rightarrow y=\dfrac{-1,3}{130\%}=-1\)

\(x:\dfrac{4}{28}=\dfrac{13}{-19}+\dfrac{8}{25}\\ 7x=-\dfrac{173}{475}\\ x=-\dfrac{\dfrac{173}{475}}{7}=-\dfrac{173}{3325}\)

27 tháng 4 2017

A=\(\dfrac{3}{x-1}\)

Để \(\dfrac{3}{x-1}\) có giá trị nguyên thì

3\(⋮x-1\)

=> x-1\(\in\)Ư(3)=\(\left\{\pm3;\pm1\right\}\)

Ta có bảng sau:

x-1 3 -3 1 -1
x 4 -2 2 0

=> x\(\in\left\{4;\pm2;0\right\}\) (thỏa mãn x\(\in Z\))

Vậy để \(\dfrac{3}{x-1}\) có giá trị nguyên thì x\(\in\left\{4;\pm2;0\right\}\)

B=\(\dfrac{x-2}{x+3}\)

Để \(\dfrac{x-2}{x+3}\) có giá trị là số nguyên thì

\(x-2⋮x+3\)

<=> \(x+3-5⋮x+3\)

<=> -5\(⋮\)x+3

=> x+3\(\in\)Ư(-5)=\(\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

x+3 1 -1 5 -5
x -2 -4 2 -8

=> x\(\in\left\{\pm2;-4;-8\right\}\) (thỏa mãn x\(\in Z\))

Vậy để\(\dfrac{x-2}{x+3}\) có giá trị nguyên thì x\(\in\left\{\pm2;-4;-8\right\}\)

28 tháng 4 2017

C=\(\dfrac{2x+1}{x-3}\)

Để \(\dfrac{2x+1}{x-3}\) có giá trị là số nguyên thì

\(2x+1⋮x-3\)

<=> (x-3)+(x-3)+7\(⋮\)x-3

<=> 2(x-3)+7\(⋮\)x-3

<=> 7\(⋮x-3\)

=> x-3\(\inƯ_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)

Ta có bảng sau:

x-3 1 -1 7 -7
x 4 2 10 -4

=> x\(\in\left\{\pm4;2;10\right\}\) (thỏa mãn x\(\in Z\))

Vậy để \(\dfrac{2x+1}{x-3}\) có giá trị là số nguyên thì x\(\in\left\{\pm4;2;10\right\}\)

D=\(\dfrac{x^2-1}{x+1}\)

Áp dụng hằng đẳng thức ta có:

\(\dfrac{x^2-1}{x+1}\) =\(\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\)= x-1

=> để x-1 có giá trị nguyên thì x\(\in Z\)

hay để \(\dfrac{x^2-1}{x+1}\) có giá trị nguyên thì x\(\in Z\)

Vậy để \(\dfrac{x^2-1}{x+1}\)có giá trị nguyên thì \(x\in Z\)

12 tháng 5 2016

http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2

12 tháng 5 2016

2.

= 1/2.7 + 1/7.12 + 1/12.17 + ... + 1/2002.2007

= 1/2 - 1/7 + 1/7 - 1/12 + 1/12 - 1/17 + ... + 1/2002 - 1/2007

= 1/2 - 1/2007

= 2007/4014 - 2/4014

= 2005/4014