Cho tam giác ABC nhọn nội tiếp đường tròn (O), các...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: góc DFC=góc EBC

góc EFC=góc DAC

góc EBC=góc DAC

=>góc DFC=góc EFC

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

5 tháng 6 2016

Mọi người giải dùm câu b và c được rồi ạ

21 tháng 5 2018

trời ơi rối quá , ai biết làm thì làm đi 

26 tháng 5 2018

A B C E F M O K N H

a) Xét tứ giác BFEC: ^BFC=^BEC=900 => Tứ giác BFEC là tứ giác nội tiếp đường tròn (đpcm).

b) Dễ thấy tứ giác ABKC nội tiếp đường tròn (O) => ^CAK=^CBK hay ^CAN=^CBK (1)

AK là đường kính của (O); B nằm trên (O) => AB\(\perp\)BK

Mà CF\(\perp\)AB => BK//CF => ^CBK=^BCF (2)

(1); (2) => ^CAN=^BCF. Mà ^BCF=^CAH (Cùng phụ ^ABC) => ^CAN=^BAH hay ^CAN=^FAM

Lại có: ^ACN=^AHE (Cùng phụ ^HAC) 

Dễ chứng minh tứ giác AFHE nội tiếp đường tròn => ^AHE=^AFE

=> ^ACN=^AFE. Hay ^ACN=^AFM

Xét \(\Delta\)AMF và \(\Delta\)ANC: ^ACN=^AFM; ^CAN=^FAM => \(\Delta\)AMF ~ \(\Delta\)ANC (g.g)

=> \(\frac{AM}{AN}=\frac{MF}{NC}\)(*)

=> ^AMF=^ANC => 180- ^AMF=180- ^ANC => ^FMH=^CNK

Tứ giác ABKC nội tiếp (O) => ^ABC=^AKC. Mà ^ABC=^AHF (Cùng phụ ^BAH)

=> ^AKC=^AHF hay ^NKC=^MHF.

Xét \(\Delta\)NCK và \(\Delta\)MFH: ^NKC=^MHF; ^CNK=^FMH => \(\Delta\)NKC ~ \(\Delta\)MFH (g.g)

=> \(\frac{HM}{NK}=\frac{FM}{NC}\)(**)

Từ (*) và (**) => \(\frac{AM}{AN}=\frac{HM}{NK}\Rightarrow\frac{AM}{HM}=\frac{AN}{NK}\)=> MN//HK (Định lí Thales đảo) (đpcm).