\(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)

ĐKXĐ \(x\ne-2,-3,-4\)

=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)

=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)

=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)

=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0

=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0

=> -3x2 - 11x - 8 = 0

=> -3x2 - 3x - 8x - 8 = 0

=> -3x(x + 1) - 8(x + 1) = 0

=> (x + 1)(-3x - 8) = 0

=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)

Vậy ...

b) Thiếu dữ liệu cuả đề 

c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)

ĐKXĐ \(x\ne-2;-3\)

=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)

=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)

=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)

=> 4x2 + 29x + 52 = x + 4

=> 4x2 + 29x + 52 - x - 4 = 0

=> 4x2 + 28x + 48 = 0

=> 4(x2 + 7x + 12) = 0

=> x2 + 7x +12 = 0

=> x2 + 3x + 4x + 12 = 0

=> x(x + 3) + 4(x + 3) = 0

=> (x + 3)(x + 4) = 0

=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\) 

Mà \(x\ne-2,-3\)nên x = -3 loại

Vậy x = -4

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19

25 tháng 2 2020

giup minh voi cac bạn

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

8 tháng 2 2020

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

22 tháng 4 2020

Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html

Mình cảm ơn trước nhaa

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

a) ĐKXĐ: \(x\ne-1;x\ne2\)

Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\frac{1}{x+1}-\frac{5}{x-2}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)

\(\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)

\(x-2-5x-5+15=0\)

\(-4x+8=0\)

\(-4x=-8\)

\(x=\frac{-8}{-4}=2\)(loại)

Vậy: x không có giá trị

b) ĐKXĐ: \(x\ne0;x\ne\frac{3}{2}\)

Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

\(\frac{x}{\left(2x-3\right)\cdot x}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)

\(x-3-10x+15=0\)

\(-9x+12=0\)

\(-9x=-12\)

\(x=\frac{-12}{-9}=\frac{4}{3}\)

Vậy: \(x=\frac{4}{3}\)

c) ĐKXĐ:\(x\ne3;x\ne1\)

Ta có: \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)

\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2\left(x-3\right)}\)

\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{4}{x-3}\)

\(\frac{6}{x-1}-\frac{4}{x-3}-\frac{4}{x-3}=0\)

\(\frac{6}{x-1}-\frac{8}{x-3}=0\)

\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=0\)

\(6\left(x-3\right)-8\left(x-1\right)=0\)

⇔6x-18-8x+8=0

⇔-2x-10=0

⇔-2(x+5)=0

Vì 2≠0 nên x+5=0

hay x=-5

Vậy: x=-5

28 tháng 3 2020

a) ĐKXĐ: x khác +2

\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)

<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)

<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)

<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22

<=> x^2 - 7x - 2 = 2x - 22

<=> x^2 - 7x - 2 - 2x + 22 = 0

<=> x^2 - 9x + 20 = 0

<=> (x - 4)(x - 5) = 0

<=> x - 4 = 0 hoặc x - 5 = 0

<=> x = 4 hoặc x = 5

làm nốt đi