\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\).

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

a, ĐK: \(x\ge11\)

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)

\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)

\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)

Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{​​}8\)

\(\Rightarrow\) phương trình vô nghiệm.

15 tháng 9 2021

\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)

\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii

21 tháng 9 2019

 ĐKXĐ:....

\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)

\(\Rightarrow4-\sqrt{1-x}=2-x\)

\(\Rightarrow\sqrt{1-x}=2+x\)

\(\Rightarrow1-x=4+4x+x^2\)

\(\Rightarrow1-x-4-4-x^2=0\)

\(\Rightarrow x^2+x+7=0\)

Đến đây dễ rồi làm nốt nha bạn !

27 tháng 9 2019

 ĐKXĐ:....

\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x​​=2−x

\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x​=2−x

\Rightarrow\sqrt{1-x}=2+x⇒1−x​=2+x

\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2

\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0

\Rightarrow x^2+x+7=0⇒x2+x+7=0

Đến đây dễ rồi làm nốt nha bạn !

18 tháng 9 2017

pt1 nhân 2 vế với căn 2

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

a) ĐK: $x\geq -2$

PT \(\Leftrightarrow \sqrt{(x+2)-4\sqrt{x+2}+4}+\sqrt{(x+2)-6\sqrt{x+2}+9}=1\)

\(\Leftrightarrow \sqrt{(\sqrt{x+2}-2)^2}+\sqrt{(\sqrt{x+2}-3)^2}=1\)

\(\Leftrightarrow |\sqrt{x+2}-2|+|\sqrt{x+2}-3|=1\)

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

\(|\sqrt{x+2}-2|+|\sqrt{x+2}-3|=|\sqrt{x+2}-2|+|3-\sqrt{x+2}|\)

\(\geq |\sqrt{x+2}-2+3-\sqrt{x+2}|=1\)

Dấu "=" xảy ra khi $(\sqrt{x+2}-2)(3-\sqrt{x+2})\geq 0$

$\Leftrightarrow 3\geq \sqrt{x+2}\geq 2$

$\Leftrightarrow 7\geq x\geq 2$

Vậy.........

b)

ĐK: $x\geq \frac{5}{2}$

PT $\Leftrightarrow \sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14$

$\Leftrightarrow \sqrt{(2x-5)+2\sqrt{2x-5}+1}+\sqrt{(2x-5)+6\sqrt{2x-5}+9}=14$

$\Leftrightarrow \sqrt{(\sqrt{2x-5}+1)^2}+\sqrt{(\sqrt{2x-5}+3)^2}=14$

$\Leftrightarrow \sqrt{2x-5}+1+\sqrt{2x-5}+3=14$

$\Leftrightarrow \sqrt{2x-5}=5$

$\Rightarrow x=15$ (tm)

25 tháng 10 2020

b, ĐKXĐ: \(x\ge\frac{5}{2}\)

\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)

\(\Leftrightarrow\sqrt{2x-5}=3\)

\(\Leftrightarrow x=7\left(tm\right)\)

25 tháng 10 2020

a, ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)

\(\Leftrightarrow2\sqrt{x-5}+6=0\)

\(\Leftrightarrow\sqrt{x-5}=-3\)

Phương trình vô nghiệm