K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

a: ĐKXĐ: x>=1/2

\(PT\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)

=>\(4\sqrt{2x-1}=12\)

=>\(\sqrt{2x-1}=3\)

=>2x-1=9

=>2x=10

=>x=5(nhận)

b: Sửa đề: \(\sqrt{9x^2-6x+1}=4\)

=>|3x-1|=4

=>3x-1=4 hoặc 3x-1=-4

=>3x=5 hoặc 3x=-3

=>x=-1 hoặc x=5/3

18 tháng 10 2020

phần a đây nhé \(a,\sqrt{4\left(2x-1\right)}-2\sqrt{9\left(2x-1\right)}+2\sqrt{16\left(2x-1\right)}=12\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\Leftrightarrow4\sqrt{2x-1}=12\Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow\left\{{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

18 tháng 10 2020

câu này sai

a,\(6x^2+x-5=0\)

\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)

b, \(3x^2+4x+2=0\)

\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)

Vì \(\Delta< 0\)nên pt vô nghiệm 

c, \(x^2-8x+16=0\)

\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)

Vì \(\Delta=0\)nên pt có nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)

8 tháng 4 2020

a) \(6x^2+x-5=0\)

Ta có : \(\Delta=1+4.6.5=121>0\)

\(\Rightarrow\sqrt{\Delta}=11\)

Phương trình có hai nghiệm :

\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)

\(x_2=\frac{-1-11}{2.6}=-1\)

b) \(3x^2+4x+2=0\)

Ta có : \(\Delta=4^2-4.3.2=-8< 0\)

Vậy phương trình vô nghiệm

c) \(x^2-8x+16=0\)

Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)

Phương trình có nghiệm kép :

\(x_1=x_2=\frac{8}{2}=-4\)

23 tháng 8 2021

a, ĐK :a >= 3

\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)

\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)

b, \(ĐK:x\ge-\frac{1}{2}\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow x=4\left(tm\right)\)

23 tháng 8 2021

a) đk: \(a\ge3\)

pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)

\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)

\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)

9 tháng 6 2019

\(a,|x+3|=3x-1\)

+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)

\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)

+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)

\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)

Vậy: x=2

13 tháng 8 2023

`\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12`      `ĐK: x >= 1/2`

`<=>2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12`

`<=>4\sqrt{2x-1}=12`

`<=>\sqrt{2x-1}=3`

`<=>2x-1=9`

`<=>x=5` (t/m)

Vậy `S={5}`.

\(\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)

=>\(4\sqrt{2x-1}=12\)

=>\(\sqrt{2x-1}=3\)

=>2x-1=9

=>2x=10

=>x=5

26 tháng 1 2016

\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16+1\right)=6x\)
\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16\right)+x^2+9-6x=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2=0\)
\(\left(x^2+9\right)\left(x-4\right)^2\ge0\)
Dấu "=" xảy ra <=> x=4
\(\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> x=3
\(\Rightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> đồng thời x=4 và x=3 -> vô nghiệm

18 tháng 7 2015

dùng phương pháp đặt ẩn phụ