K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d: \(\left(xy+4\right)-\left(2x+2y\right)^2\)

\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)

\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)

\(=\left(y-2\right)\left(x-2\right)\left(y+2\right)\left(x+2\right)\)

f: \(x^2-4xy+3y^2\)

\(=x^2-xy-3xy+3y^2\)

\(=x\left(x-y\right)-3y\left(x-y\right)\)

\(=\left(x-y\right)\left(x-3y\right)\)

19 tháng 10 2017

Bài 1:

a) 25x2 - 10xy + y2 = (5x - y)2

b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)

c) 8x3 + 36x2y + 54xy2 + 27y3

= 8x3 + 27y3 + 36x2y + 54xy2

= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)

= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)

= (2x + 3y)(4x2 + 12xy + 9y2)

= (2x + 3y)(2x + 3y)2 = (2x + 3y)3

c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2

= (a2 + b2 - 5)2 - (2ab + 4)2

= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)

= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)

= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)

= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)

pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm

19 tháng 10 2017

Bài 2:

a) 2x3 + 3x2 + 2x + 3

= 2x3 + 2x + 3x2 + 3

= 2x(x2 + 1) + 3(x2 + 1)

= (x2 + 1)(2x + 3)

b)x3z + x2yz - x2z2 - xyz2

= xz(x2 + xy - xz - yz)

= \(xz\left [ x(x + y) - z(x + y) \right ]\)

= xz(x + y)(x - z)

c) x2y + xy2 - x - y

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

d) 8xy3 - 5xyz - 24y2 + 15z

= 8xy3 - 24y2 - 5xyz + 15z

= 8y2(xy - 3) - 5z(xy - 3)

= (xy - 3)(8y2 - 5z)

e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3

= x3 - y3 + y - 3x2y + 3xy2 - x

= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)

= (x - y)(x2 + xy + y2 - 3xy - 1)

= (x - y)(x2 - 2xy + y2 - 1)

= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)

= (x - y)(x - y - 1)(x - y + 1)

câu f tương tự

NV
1 tháng 1 2019

1/

\(x+y=z+t\Rightarrow t=x+y-z\)

\(\Rightarrow t^2=\left(x+y-z\right)^2=x^2+y^2+z^2+2xy-2xz-2yz\)

Thay vào

\(B=x^2+y^2+z^2+x^2+y^2+z^2+2xy-2xz-2yz\)

\(B=x^2+2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(B=\left(x+y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\) (đpcm)

2/

\(A=x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}+\dfrac{3y^2}{4}-\dfrac{3y}{2}-\dfrac{9}{4}\)

\(\Leftrightarrow A=\left(x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}\right)+\dfrac{3}{4}\left(y^2-2y+1\right)-3\)

\(\Leftrightarrow A=\left(x+\dfrac{y}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(\left\{{}\begin{matrix}y-1=0\\x+\dfrac{y}{2}-\dfrac{3}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

b/ Nhận thấy \(x=1\) không phải là nghiệm

\(y\left(x-1\right)=x^3-x^2+2\)

\(\Leftrightarrow y=\dfrac{x^3-x^2+2}{x-1}=x^2+\dfrac{2}{x-1}\)

Do \(x;y\) nguyên \(\Rightarrow\dfrac{2}{x-1}\) nguyên

\(\Rightarrow x-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(x-1=-2\Rightarrow x=-1\Rightarrow y=0\)

\(x-1=-1\Rightarrow x=0\Rightarrow y=-2\)

\(x-1=1\Rightarrow x=2\Rightarrow y=6\)

\(x-1=2\Rightarrow x=3\Rightarrow y=10\)

Vậy pt đã cho có 4 cặp nghiệm:

\(\left(x;y\right)=\left(-1;0\right);\left(0;-2\right);\left(2;6\right);\left(3;10\right)\)

9 tháng 8 2017

a, 7x^3 + 5 ( x - y )^2 v- 7y^3
= 7 ( x^3 - y^3 ) + 5 ( x-y )^2
= 7 ( x - y )^3 + 5 ( x-y ) ^2
= [ 7 ( x- y ) + 5 ] ( x-y) ^2

Câu 2: 

a: =>(x-1)(x+1)=0

=>x=1 hoặc x=-1

b: \(\Leftrightarrow\left(x-3\right)=0\)

=>x=3

c: =>x(x^2-5)=0

hay \(x\in\left\{0;\sqrt{5};-\sqrt{5}\right\}\)

d: \(\Leftrightarrow\left(3x-2-x-2\right)\left(3x-2+x+2\right)=0\)

=>(2x-4)(4x)=0

=>x=0 hoặc x=2

e: \(\Leftrightarrow x^2-x-4x-12=0\)

=>x^2-5x-12=0

=>\(x\in\left\{\dfrac{5+\sqrt{73}}{2};\dfrac{5-\sqrt{73}}{2}\right\}\)

f: \(\Leftrightarrow\left(x-2\right)\left(2-x+2\right)=0\)

=>(x-2)(4-x)=0

=>x=2 hoặc x=4

25 tháng 9 2018

Bài 1:

a) \(x^2-y^2+10x+25\)

\(=\left(x^2+10x+25\right)-y^2\)

\(=\left(x+5\right)^2-y^2\)

\(=\left(x+y+5\right)\left(x-y+5\right)\)

b) \(x^3-x^2-5x+125\)

\(=x^3+5x^2-6x^2-30x+25x+125\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^4+4y^4\)

\(=\left(x^2\right)^2+2x^22y^2+\left(2y^2\right)^2-2x^22y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

d)Sửa đề \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left[\left(b^2-c^2\right)+\left(a^2-b^2\right)\right]+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)-b\left(a^2-b^2\right)+c\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b^2-c^2\right)-\left(b-c\right)\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)-\left(b-c\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c-a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

e) \(7x^2-10xy+3y^2\)

\(=\left(\sqrt{7}x\right)^2-2.\sqrt{7}x.\sqrt{3}y+\left(\sqrt{3}y\right)^2\)

\(=\left(\sqrt{7}x-\sqrt{3}y\right)^2\)

f) Sửa đề \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

h) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=x^2y+xy^2-y^2z-yz^2+x^2z-xz^2\)

\(=\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y^2-z^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)\left(y-z\right)-yz\left(y+z\right)\)

\(=\left(y+z\right)\left[x^2+x\left(y-z\right)-yz\right]\)

\(=\left(y+z\right)\left(x^2+xy-xz-yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)-z\left(x+y\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

27 tháng 9 2018

ài 2 đâu bạn