\(\frac{\left(x-2\right)\left(9-x\right)}{x-1}\le0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

Giúp mình hoàn thành các bài tập này với ạ.Cảm ơn rất nhìuuuuuuu @@@

19 tháng 3 2020

@Akai Haruma

11 tháng 1 2020
https://i.imgur.com/NIunWu5.jpg
4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

NV
26 tháng 2 2020

a/ \(\frac{-25}{\left(-x+2\right)\left(-3x-2\right)}< 0\Leftrightarrow\left[{}\begin{matrix}x< -\frac{2}{3}\\x>2\end{matrix}\right.\)

b/ \(\frac{1}{x-1}-\frac{2}{2x-1}>0\Leftrightarrow\frac{1}{\left(x-1\right)\left(2x-1\right)}>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

c/ \(\frac{2}{3-x}+\frac{2}{x-3}\le0\Leftrightarrow0\le0\) (luôn đúng)

Vậy nghiệm của BPT là \(R\backslash\left\{3\right\}\)

d/ \(1-\frac{x-1}{x^2-3x+2}\ge\Leftrightarrow\frac{x^2-4x+3}{\left(x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\ge3\\1< x< 2\\x< 1\end{matrix}\right.\)

e/ \(\frac{x+1}{x^2+x+2}-\frac{1}{x+1}>0\Leftrightarrow\frac{x-1}{\left(x+1\right)\left(x^2+x+2\right)}>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)