Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)
\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)
\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)
\(\Leftrightarrow1< t< 3\)
\(\Rightarrow1< \sqrt{x-2}< 3\)
\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)
b/
ĐKXĐ: \(x\ge3\)
- Với \(x=3\) BPT thỏa mãn
- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương
\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn
Vậy BPT có nghiệm duy nhất \(x=3\)
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)
\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)
\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)
Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)
b/ ĐKXĐ: \(x\ge4\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le5\) bình phương 2 vế:
\(2\left(x^2-16\right)>4\left(x-5\right)^2\)
\(\Leftrightarrow x^2-20x+66< 0\)
\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)
Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)
a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)
Bpt trở thành: \(-t^2+t+2< 0\)
<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)
Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)
<=>\(-x^2+5x-4>0\)
<=>\(1< x< 4\)
<=>\(x\in\left(1;4\right)\)
b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định
Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)
Câu trả lời bằng hình =))