Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\Leftrightarrow\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x>1\\-x>-4\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}\Rightarrow}\frac{1}{4}< x< 4}\)
Vậy \(\frac{1}{4}< x< 4\)
Vì x2 + 12 > 0 với mọi x
=> (4x-1)(x2+12)(-x+4) > 0
Khi ( (4x-1)(-x+4) > 0
TH1 : \(\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)
<=> \(\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}}\)
=> 1/4 < x < 4
TH2 \(\hept{\begin{cases}4x-1< 0\\-x+4< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x< \frac{1}{4}\\x>4\end{cases}}\)
Vì không tồn tai x lớn hơn 4 và nhỏ hơn 1/4
=> TH2 không tồn tại x
=> (4x-1)(x2+12)(-x+4) > 0
khi 1/4 < x < 4
Vì x^2 + 12 > 0 với mọi x
Ta có bất phương trình tương đương: (4x-1)(-x+4) > 0
=> 4x-1 và -x+4 phải cùng dấu.
Trường hợp 1: 4x-1 > 0 và -x + 4 > 0 <=> x>1/4 và x<4 <=> 1/4 < x < 4.
Trường hợp 2: 4x-1 < 0 và -x + 4 < 0 <=> x<1/4 và x>4 (vô lý)
Vậy S={x | 1/4 < x < 4}
\(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}4x-1>0\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\\x^2+12>0\Leftrightarrow x^2>-12\Leftrightarrow x>12\\-x+4>0\Leftrightarrow-x>-4\Leftrightarrow x< 4\end{cases}}\)
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
a)(x-1)(x-4)>0
<=>x-1 và x-4 cùng dấu
TH1:\(\int^{x-1>0}_{x-4>0}\Rightarrow\int^{x>1}_{x>4}\Rightarrow x>4\) (1)
TH2:\(\int^{x-1<0}_{x-4<0}\Rightarrow\int^{x<1}_{x<4}\Rightarrow x<1\) (2)
Từ (1);(2) suy ra x<1 hoặc x>4 thì (x-1)(x-4)>0
b)(x+2)(x-3)<0
<=>x+2 và x-3 trái dấu
TH1:x+2<0 và x-3>0
=>x<-2 và x>3
=>3<x<-2 (vô lí,loại)
TH2:x+2>0 và x-3<0
=>x>-2 và x<3
=>-2<x<3 (chọn)
Vậy -2<x<3 thì (x+2)(x-3)<0
ta có \(x^2+12>0\)
\(\Rightarrow\left(4x-1\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\frac{1}{4}< x< 4\)
Ta có: (4x-1)(x2+12)(-x+4)>0
Mà x2+12>0
⇒(4x-1)(-x+4)>0
Xét bảng giá trị:
x | \(\frac{1}{4}\) 4 |
4x-1 | \(-\) 0 \(+\) \(+\) |
-x+4 | \(+\) \(+\) 0 \(-\) |
Vế trái |
\(-\) 0 \(+\) 0 \(-\) |
Từ bảng trên ,ta thấy tập nghiệm của bất phương trình đã cho là:
S={x∈R/\(\frac{1}{4}\)<x<4}
\(\left(x^2+7x+12\right).\left(4x-16\right)-\left(x+3\right)\left(x^2-5x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^2+3x+4x+12\right).4.\left(x-4\right)-\left(x+3\right)\left(x^2-x-4x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow4\left(x+4\right)\left(x+3\right)\left(x-4\right)-\left(x+3\right)\left(x-4\right)\left(x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(4-x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(8-x\right)=0\)
\(\Leftrightarrow\frac{\orbr{\begin{cases}x+4=0\\x-4=0\end{cases}}}{\orbr{\begin{cases}x+3=0\\8-x=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-4\\x=4\end{cases}}}{\orbr{\begin{cases}x=-3\\x=8\end{cases}}}\)
a/ \(\left(x+\dfrac{1}{9}\right)\left(2x-5\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{1}{9}>0\\2x-5< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{1}{9}< 0\\2x-\dfrac{1}{5}>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-\dfrac{1}{9}\\x< \dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< -\dfrac{1}{9}\\x>\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\dfrac{-1}{9}< x< \dfrac{5}{2}\)
Biểu diễn:
0 -1/9 5/2
b/ \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left(4x-1\right)\left(x^2+12\right)\left(4-x\right)>0\)
vì \(x^2+12\ge12>0\) nên:
\(bpt\Leftrightarrow\left(4x-1\right)\left(4-x\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x-1>0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x-1< 0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{4}\\x>4\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\dfrac{1}{4}< x< 4\)
Vậy..............
biểu diễn:........(tự biểu diễn nha bn)
c/ \(x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\) (vô lí)
=> bpt vô nghiệm
\(a.\left(x+\dfrac{1}{9}\right)\left(2x-5\right)< 0\)
Lập bảng xét dấu , ta có :
x x + 1/9 Tích số 2x - 5 -1/9 5/2 0 0 0 0 - + + - - + + - + Vậy , nghiệm của BPT : \(\dfrac{-1}{9}< x< \dfrac{5}{2}\)
b) ( 4x - 1)( x2 + 12)( 4 - x) > 0
Do : x2 + 12 > 0
⇒ ( 4x - 1)( 4 - x) > 0
Lập bảng xét dấu , ta có :
x 4x - 1 4 - x Tích số 1/4 4 0 0 0 0 - + + + + - - + - Vậy , nghiệm của BPT : \(\dfrac{1}{4}< x< 4\)
c) x2 - 6x + 9 < 0
⇔ ( x - 3)2 < 0 ( vô lý )
Vậy , BPT vô nghiệm
P/s : Bạn tự biểu diễn nhé.
Nhân vế theo vế rồi giải như phương trình, khác mỗi dấu bđt