K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1 2024

ĐKXĐ: \(x>3\)

Lấy logarit 2 vế: \(\left(2x^2-7x\right).ln\left(x-3\right)>0\)

\(\Leftrightarrow x\left(2x-7\right)ln\left(x-3\right)>0\)

Bảng xét dấu:

loading...

\(\Rightarrow\) Nghiệm của BPT là \(\left[{}\begin{matrix}3< x< \dfrac{7}{2}\\x>4\end{matrix}\right.\)

29 tháng 3 2016

Bất phương trình tương đương với :

\(3^{x^2+2x-15}>3^0\) 

\(\Leftrightarrow x^2+2x-15>0\)

\(\Leftrightarrow x>3\) V x<-5

Vậy tập nghiệm của bất  phương trình là :

\(D=\left(-\infty;-5\right)\cup\left(3;+\infty\right)\)

 

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

30 tháng 3 2016

Ta có điều kiện  của bất phương trình là 

\(x^2+2x-8>0\)

Khi đó ta có thể viết bất phương trình dưới dạng :

\(\log_{\frac{1}{2}}\left(x^2+2x-8\right)\ge\log_{\frac{1}{2}}16\)

Vì cơ số \(\frac{1}{2}\) nhỏ hơn 1 nên bất phương trình trên tương đương với hệ

\(\begin{cases}x^2+2x-8>0\\x^2+2x-8\le16\end{cases}\) \(\Leftrightarrow\begin{cases}x<-4Vx>2\\-6\le x\le4\end{cases}\)\(-6\le\)x\(\le-4\) và 2<x\(\le4\)

Vậy tập nghiệm của bất phương trình đã cho là

\(D=\left(-6;4\right)\cup\left(2;4\right)\)

14 tháng 5 2016

Ta có \(f\left(x\right)=e^{2x-1}+2e^{1-2x}+7x-5\Rightarrow f'\left(x\right)=2e^{2x-1}-4e^{1-2x}+7\)

\(f'\left(x\right)=0\Leftrightarrow2e^{2x-1}-4e^{1-2x}+7=0\)

\(\Leftrightarrow2e^{2x-1}-\frac{4}{e^{2x-1}}+7=0\)

\(\Leftrightarrow2\left(e^{2x-1}\right)^2+7e^{2x-1}-4=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}e^{2x-1}=\frac{1}{2}\\e^{2x-1}=-4\end{array}\right.\) \(\Leftrightarrow e^{2x-1}=\frac{1}{2}\)

                          \(\Leftrightarrow2x-1=\ln\frac{1}{2}\)

                          \(\Leftrightarrow x=\frac{1}{2}\ln\frac{e}{2}\) là nghiệm của phương trình