Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTLN là \(\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\) Sách mình ghi thế nhưng không có lời giải li ke nha
\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
\(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)
\(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)
\(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)
Vì \(x\ge0;x\ne1\)
Do đó \(0< 4\sqrt{x}+8\)
Mà \(-\left(3\sqrt{x}+2\right)< 0\)
Vậy \(P< \frac{15}{4}\left(đpcm\right)\)
c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)
\(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)
Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)
Do đó \(P\le4\Leftrightarrow x=1\)
Vậy Max P=4 khi x=1
P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1
P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2)
P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2)
P=3x−8+5√x(√x−1)(√x+2)
P=3x−3√x+8√x−8(√x−1)(√x+2)
P=(3√x+8)(√x−1)(√x−1)(√x+2)
P=(3√x+8)(√x+2)
b)Để P<154 thì (3√x+8)(√x+2) <154
Ta có:(3√x+8)(√x+2) <154
⇔(3√x+8)(√x+2) −154 <0
⇔12√x+32−15√x−304(√x+2) <0
⇔−(3√x+2)4√x+8 <0
Vì x≥0;x≠1
Do đó 0<4√x+8
Mà −(3√x+2)<0
Vậy P<154 (đpcm)
c)Ta có:P=(3√x+8)(√x+2)
⇔P=3√x+6+2(√x+2)
⇔P=3(√x+2)(√x+2) +22√x+2
⇔P=3+2√x+2
Vì x≥0;x≠1⇒2√x+2 ≤1
Do đó
Áp dụng BĐT Cô si với hai số không âm
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge2\sqrt{\frac{1}{\sqrt{x}\sqrt{y}}}\Leftrightarrow6\ge2\sqrt{\frac{1}{\sqrt{xy}}}\Leftrightarrow\frac{1}{\sqrt{xy}}\le9\)
Vậy MAx A = 9 khi x = y=1/9
\(A=\dfrac{1}{x^3+y^3+xy}\le\dfrac{1}{xy\left(x+y\right)+xy}=\dfrac{1}{xy\left(x+y+1\right)}=\dfrac{1}{2xy}\le\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy GTLN của A là 2 . Dấu = xảy ra khi \(x=y=\dfrac{1}{2}\)