Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-x^2\le0\)
\(\Rightarrow-x^2+2\le2\)
Vậy giá trị lớn nhất của biểu thức trên là 2 khi và chỉ khi x=0
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
Ta có:
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+3\ge3\)
Vậy biểu thức \(\left(x-2\right)^2+3\) có giá trị nhỏ nhất là 3 khi x - 2 = 0 hay x = 2
cái này lp 6 còn lm đc
đặt A=(x-2 )2 + 3
ta thấy:
(x-2)2\(\ge\)0
=>(x-2)2+3\(\ge\)0+3
<=>A\(\ge\)3
vậy Amin=3 khi x=2
Câu 2:
\(=2\left(x^2-\frac{1}{2}+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{1}{2}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2+\frac{3}{2}\right)\)
\(=2\left(\left(x-\frac{1}{4}\right)^2+\frac{23}{16}\right)\)
\(=2\left(x-\frac{1}{4}\right)^2+2.\frac{23}{16}\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}\le\frac{23}{8}\)
Vậy MaxB = \(\frac{23}{8}\Leftrightarrow x-\frac{1}{4}=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
|x - 3| + x2 + y2+1 = (|x - 3| + x2) + y3 đạt GTNN thì mỗi số hạng trong tổng phải đạt GTNN
Nhưng ta không thể tìm được giá trị nhỏ nhất của y3 (vì k có số nhỏ nhất) nên bạn xem lại đề bài nha
1
Tick nha
a=1