Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
(�+1)2�2[(�−1)2+1]=�2(n+1)2n2[(n−1)2+1]=y2
Muốn pt trên đúng thi (�−1)2+1(n−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
y lớn hơn 2 => y lẻ => y chia 4 dư 3 hoặc 1
=> y^2 chia 4 dư 1 => 2y^2 chia 4 dư 2
=> 2y^2 + 1 chia 4 dư 4
mà số chính phương chia 4 dư 0 hoặc 1=> ko phải sô chính phương
Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại
+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn
+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)
=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3
Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.
Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3
Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại
Vậy n = 3
Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)
Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8
Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5