K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

gfvfvfvfvfvfvfv555

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0

Gọi E là trung điểm của AB

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(Gt)

Do đó: G∈CE(Tính chất ba đường trung tuyến của tam giác)

⇒GD//BE

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(gt)

Do đó: \(CG=\dfrac{2}{3}CE\)(Tính chất ba đường trung tuyến của tam giác)(1)

Ta có: CG+GE=CE(G nằm giữa C và E)

⇔GE=CE-EG

hay \(GE=\dfrac{1}{3}CE\)(2)

Từ (1) và (2) suy ra \(\dfrac{CG}{GE}=\dfrac{2}{1}\)

Xét ΔCEB có 

G∈CE(cmt)

D∈BC(gt)

GD//EB(cmt)

Do đó: \(\dfrac{GC}{EG}=\dfrac{DC}{BD}\)(Định lí Ta lét)

\(\dfrac{DC}{BD}=2\)

hay DC=2BD

Ta có: BD+DC=BC(D nằm giữa B và C)

⇔2BD+BD=BC

⇔3BD=BC

hay \(BD=\dfrac{1}{3}BC\)(đpcm)

20 tháng 1 2021

Từ điểm C kẻ đường trung tuyến CE của tam giác ABC

Ta có GD sog sog AB (gt).

 Suy ra : GD sog sog BE ( E thuộc AB)

Xét Tam giác ABC: G là trọng tâm (gt)

 Suy ra: GE/CE = 1/3 (Tc trọng tâm trong tgiác)

Xét tam giác BCE có: GD sog sog BE (cmt)

 Suy ra: BD/BC = GE/CE   (định lý Talet)

mà:  GE/CE = 1/3 (cmt)

 Suy ra: BD = 1/3 BC      (đpcm)

 

30 tháng 5 2016

A B C G D E M

Gọi M là trung điểm BC. Khi đó ta có \(AG=\frac{2}{3}AM\)

Do GD song song AB nên \(\frac{BD}{BM}=\frac{AG}{AM}=\frac{2}{3}\Rightarrow\frac{BD}{BC}=\frac{1}{3}\)

Tương tự ta có \(\frac{EC}{BC}=\frac{1}{3}\Rightarrow\frac{BD}{BC}=\frac{EC}{BC}.\)

b. Từ tỉ số \(\frac{BD}{BC}=\frac{1}{3};\frac{EC}{BC}=\frac{1}{3}\Rightarrow\frac{DE}{BC}=\frac{1}{3}\)

Vậy \(BD=DE=EC.\)

Chúc em học tốt :)

9 tháng 2 2018

A A B B C C M M D D E E F F

a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)

\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)

Vậy nên DE + DF = 2AM.

b) Theo định lý Ta let ta có:

\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)

1. Cho tứ giác ABCD gọi O là giao điểm của AC và BD, đường thẳng qua A song song với BC cắt BD tại E. Đường thẳng qua B song song với AD cắt AC tại G. a. Chứng minh EG // CD b. Giả sử AB//CD. Chứng minh AB2 =CD*EG 2. Cho tam giác ABC vuông tại A , vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD , K là giao điểm của AC và BF. a. Chứng minh rằng:...
Đọc tiếp

1. Cho tứ giác ABCD gọi O là giao điểm của AC và BD, đường thẳng qua A song song với BC cắt BD tại E. Đường thẳng qua B song song với AD cắt AC tại G.

a. Chứng minh EG // CD

b. Giả sử AB//CD. Chứng minh AB2 =CD*EG

2. Cho tam giác ABC vuông tại A , vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD , K là giao điểm của AC và BF.

a. Chứng minh rằng: AH = AK

b. AH2 = BH * CK

3. Cho tam giác ABC , trên cạnh AC , lấy điểm D, E sao cho AD=DE=EC. Trung tuyến AM cắt BD tại P, trung tuyến CN cắt BE tại Q.

a. Chứng minh Q là trung điểm của trung tuyến CN.

b. Chứng minh PQ//AC.

c. Suy ra BC = \(\frac{1}{2}\) MN, PC = \(\frac{3}{4}\)DE.

4. Cho góc nhọn xOy . Trên cạnh Ox lấy điểm D,E. Đường thẳng d qua D cắt Oy tại F, đường thẳng d' qua E và song song với d , cắt cạnh Oy tại G; đường thẳng d'' qua G và song song với EF, cắt cạnh Ox tại H. Chứng minh OE2 = OD*OH

5. Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4 cm. Gọi F là trung điểm của BC, qua F vẽ FM vuông góc AB tại M và FN vuông góc AC tại N.

a. Tìm độ dài AF.

b. Chứng minh tứ giác AMFN là HCN.

c. Gọi D là điểm đối xứng với F qua N. Chứng minh AFCD là hình thoi.

d. Đường thẳng BN cắt cạnh DC tại K. Chứng minh \(\frac{DK}{DC}=\frac{1}{3}\)

1
13 tháng 3 2020

bài 2: undefined