\(p=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+1\)

tìm x để 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

\(Q=\left(\frac{\sqrt{x}^2-1}{2\sqrt{x}}\right)^2.\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(Q=\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}\right].\left[\frac{\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(Q=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}.\frac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(Q=\frac{-4\sqrt{x}}{2\sqrt{x}}=-2\)

22 tháng 7 2019
https://i.imgur.com/naNI8CT.jpg

Sao em giỏi vậy ? Toán 9 mà làm đc tài thật >>

31 tháng 7 2019

#)Giải :

Bài 1 :

a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right]\frac{\left(1-x\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x+1}\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) Để \(P>0\Rightarrow\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow0< x< 1}\)

c) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu ''='' xảy ra khi \(x=\frac{1}{4}\)