Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đặt ĐKXĐ và rút gọn P đi\(\sqrt{x}-x=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4},\forall x\ne1\)
\(\Rightarrow Maxp=\frac{1}{4}\Leftrightarrow dấu=xảyra\)
\(\Leftrightarrow x=\frac{1}{4}\)
Bạn tự thu gọn thành 1+\(\frac{1}{\sqrt{x}+2}\) <= 1+\(\frac{1}{2}\)=\(\frac{3}{2}\) <=> x = 0
Lời giải:
ĐK: $x\geq 0; x\neq 1$
$P=\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{1}{\sqrt{x}-1}=-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x-1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{x+\sqrt{x}+1-(x+2)-(x-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow Q=\frac{2(x+\sqrt{x}+1)}{-\sqrt{x}}+\sqrt{x}$
$=-\left(\sqrt{x}+\frac{2}{\sqrt{x}}+2\right)$
Dễ thấy $\sqrt{x}+\frac{2}{\sqrt{x}}+2\geq 2\sqrt{2}+2$ theo BĐT Cô-si
$\Rightarrow Q\leq -(2\sqrt{2}+2)$ hay $Q_{\max}=-(2\sqrt{2}+2)$
\(a.A=\frac{5\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}.\)
\(=\frac{5\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{5\sqrt{x}+4+x-2\sqrt{x}+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=-\frac{1}{\sqrt{x}+2}\)
\(b,4A_{min}\Leftrightarrow A_{min}\Rightarrow\frac{-1}{\sqrt{x}+2}\)nhỏ nhất
\(\frac{\Rightarrow1}{\sqrt{x}+2}\)lớn nhất \(\Leftrightarrow\sqrt{x}+2\)nhỏ nhất
\(\sqrt{x}+2\ge2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\Rightarrow A_{min}=\frac{-1}{0+2}=-\frac{1}{2}\Rightarrow4A_{min}=-1\Leftrightarrow x=0\)