\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}}{2014+\frac{2013}{2}+\frac{2012...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Ta có :}P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{2014+\frac{2013}{2}+...+\frac{1}{2014}}\)

\(\Rightarrow P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{A}\)với \(A=2014+\frac{2013}{2}+...+\frac{1}{2014}\)

\(\Rightarrow A=1+\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)

\(\Rightarrow A=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)

\(\Rightarrow A=2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)\)

\(\text{Khi đó : }P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)}\)

\(\Rightarrow P=\frac{1}{2015}\)

10 tháng 8 2015

Phân số \(\frac{2013}{2011}\) phải là \(\frac{4023}{2011}\)

11 tháng 2 2020

\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)

\(\Leftrightarrow\left(\frac{x}{2012}+1\right)+\left(\frac{x-1}{2013}+1\right)+\left(\frac{x-2}{2014}+1\right)-\left(\frac{x-3}{2015}+1\right)=\frac{x-4}{1008}+2\)

\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x-4+1008.2}{1008}\)

\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x+2012}{1008}\)

\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}-\frac{x+2012}{1008}=0\)

\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\right)=0\)

Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\ne0\)

\(\Rightarrow x+2012=0\)\(\Leftrightarrow x=-2012\)

Vậy \(x=-2012\)

11 tháng 2 2020

Chu Công Đứcbạn làm kết quả đúng nhưng trình bày sai rồi vế phải bạn cộng 2 nhưng vế trái bạn cộng 4???

11 tháng 11 2016

=\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)-\left(\frac{x-3}{2013}-1\right)-\left(\frac{x-4}{2012}-1\right)\)

=\(\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2106}{2013}-\frac{x-2016}{2012}\)

=\(\left(x-2016\right).\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)\)

Mà: \(\frac{1}{2012}>\frac{1}{2015}\)  và \(\frac{1}{2014}< \frac{1}{2013}\)

=>\(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\)  khác \(0\)

Nên: \(x-2016=0\)

=>\(x=2016\)

18 tháng 9 2016

\(\frac{x+1}{2015}\)+\(\frac{x+2}{2014}\)+\(\frac{x+3}{2013}\)+\(\frac{x+4}{2012}\)=44

\(\frac{x+1}{2015}\)+1+\(\frac{x+2}{2014}\)+1+\(\frac{x+3}{2013}\)+1+\(\frac{x+4}{2012}\)+1=44+4

\(\frac{x+2016}{2015}\)+\(\frac{x+2016}{2014}\)+\(\frac{x+2016}{2013}\)+\(\frac{x+2016}{2012}\)=48

(x+2016)(\(\frac{1}{2015}\)+\(\frac{1}{2014}\)+\(\frac{1}{2013}\)+\(\frac{1}{2012}\))=48

tu lam tiep.Nho k tui voi

18 tháng 9 2016

KẾT QUẢ =4 

XIN LỖI NHA

22 tháng 12 2016

sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)

30 tháng 7 2019

\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)

15 tháng 4 2017

Ta có: \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=1+\left(1+\frac{2012}{2}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=\frac{2014}{2014}+\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

\(\Rightarrow x=2014\)

Lưu ý: số 2013 ở dòng T2 được tách ra làm 2013 số 1