\(n\inℕ\), sao cho

\(a,\left(4n^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

a, 4n - 3n -1 chia hết 4n - 1

=> n(4n - 1 )  -2n -1 chia hết 4n - 1

=> 2n -1 chia hết 4n - 1

=> 4n - 1 + 2n chia hết 4n - 1

=> 2n chia hết 4n - 1

Mà 2n - 1 chia hết 4n - 1

=> 2n - (2n - 1) chia hết 4n - 1

=> 1 chia hết 4n - 1

=> 4n - 1 = 1

=> 4n = 2 

=> n = \(\frac{1}{2}\)

Mà n thuộc N

Vậy không có giá trị của n

b, 4n2 -3n -1 chia hết n - 1

=> 4n (n - 1) + n - 1 chia hết n - 1

=> n - 1 thuộc N

=> n thuộc N

Vậy n thuộc N

27 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

27 tháng 1 2017

chết phần a quên nhân vs 1/3

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

5 tháng 11 2020

Ta có\(15-2n⋮n+1\)

\(\Rightarrow17-2\left(n+1\right)⋮n+1\)

\(\Rightarrow17⋮n+1\)

\(\Rightarrow n+1\inƯ\left(17\right)=\left\{1;17\right\}\)

\(\Rightarrow n=\left\{0;16\right\}\)

5 tháng 11 2020

Ta có \(6n+9⋮4n-1\)

\(\Rightarrow4\left(6n+9\right)⋮4n-1\)

\(\Rightarrow24n+36⋮4n-1\)

\(\Rightarrow6\left(4n-1\right)+42⋮4n-1\)

\(\Rightarrow42⋮4n-1\)

\(\Rightarrow4n-1\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

\(n\in N\Rightarrow n=\left\{1;2\right\}\)

các bạn trình bày cách làm ra giùm mình nhé.    ^_^

ai nhanh mình tích cho

15 tháng 3 2020

4.n2 : 3 luôn dư 1

nên 4.n2-1 \(⋮3\)

=) \(\left(x+45\right).\left(4.x^2-1\right)⋮3\)

12 tháng 5 2019

a)

Gọi d=(2n+1;3n+2)

Ta có

2n+1\(⋮\)d => 3(2n+1)=6n+3\(⋮\)d

3n+2\(⋮\)d => 2(3n+2)=6n+4\(⋮\)d

=> 6n+4-(6n+3)=1\(⋮\)d

hay d=1

Vậy 2n+1 và 3n+2 là số nguyên tố cùng nhau

12 tháng 5 2019

a) Gọi \(\left(2n+1;3n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

Vậy 2n+1 và 3n+2 nguyên tố cùng nhau

15 tháng 8 2018

Ta có : \(n+4=n-1+\)\(5\)

Ta thấy : \(\left(n-1\right)⋮\left(n-1\right)\)

Nên \(\left(n+4\right)⋮\left(n-1\right)\Leftrightarrow5⋮\)\(\left(n-1\right)\)

\(\Leftrightarrow\left(n-1\right)\inƯ\left(5\right)=\)\((1;5)\)

N - 1     1    5
   N  2  6
15 tháng 8 2018

a) \(n+4⋮n-1\Rightarrow\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)

\(\Rightarrow n-1\in\left\{1;5;-1;-5\right\}\Rightarrow n\in\left\{2;6;0;-4\right\}\)

b) \(n^2+2n-3=\left(n^2+n\right)+n-3=n\left(n+1\right)+n-3\)

vì \(n\left(n-1\right)⋮n-1\)\(\Rightarrow n-3⋮n+1\Rightarrow\left(n+1\right)-4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)

\(\Rightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)

25 tháng 7 2017

6n+9\(⋮\)4n-1 ->4.(6n+9)\(⋮\)4n-1

->24n+36\(⋮\)4n-1

->24n-6+42\(⋮\)4n-1

->6(4n-1)+42\(⋮\)4n-1

->4n-1 thuoc uoc cua 42 ma n\(\supseteq\)1 nen 4n-1\(\supseteq\)3

4n-13672142
n17/4211/243/4

ma n laf so tu nhien nen n=1,2

10 tháng 2 2020

Bài giải

Ta có: \(7^{2^{4n+1}}\) = (72)4n + 1   (n \(\inℕ^∗\))

                          = 494n + 1

                          = 494n.49

                          = (...01).49

                          = (...49)

Vậy...

vì sao bạn ra(......01) vậy bạn Trần Công Mạnh