Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{2009}A=\frac{2009^{2017}+1}{2009^{2017}+2009}=\frac{2009^{2017}+2009}{2009^{2017}+2009}-\frac{2008}{2009^{2017}+2009}=1-\frac{2008}{2009^{2017}+2009}< 1\)
\(\frac{1}{2009}B=\frac{2009^{2018}-2}{2009^{2018}-4018}=\frac{2009^{2018}-4018}{2009^{2018}-4018}+\frac{4016}{2009^{2018}-4018}=1+\frac{4016}{2009^{2018}-4018}>1\)
\(\Rightarrow\)\(A< 1< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(A=-9\frac{5}{11}-\left(3\frac{1}{8}+\frac{4}{11}\right)\)
\(A=-9\frac{5}{11}-3\frac{1}{8}-\frac{4}{11}\)
\(A=-9\frac{5}{11}-\frac{4}{11}-3\frac{1}{8}\)
\(A=\frac{-108}{11}-\frac{25}{8}\)
\(A=\frac{-1139}{88}\)
Phân số chỉ số diện tích trồng hoa và rau chiếm là :
\(\frac{2}{9}+\frac{1}{2}=\frac{13}{18}\)(diện tích vườn)
Đ/s: \(\frac{13}{18}\)diện tích vườn
(2/2017 + 2/2018) / (5/2017 + 5/2018)
= 2 x (1/2017 + 1/2018) / 5 x (1/2017 + 1/2018)
= 2/5 (vì (1/2017 + 1/2018) khác 0)
\(\frac{\frac{2}{2017}+\frac{2}{2018}}{\frac{5}{2017}+\frac{5}{2018}}\)
\(=\frac{2\left(\frac{1}{2017}+\frac{1}{2018}\right)}{5\left(\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{2}{5}\)
Study well ! >_<
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
\(B=\frac{2018+2019}{2019+2020}\)
\(\Rightarrow B=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)
\(\Rightarrow B< \frac{2018}{2019}+\frac{2019}{2020}=A\)
Vậy B < A
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow B< \frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}=A\)
Vậy B < A
mấy bài này dễ mà .
Mọi người làm nhanh lên kẻo hết thưởng đấy .
Mọi người cố gắng nha. Goodbye. See you later. Bye Bye,........::::::)))))))
15 phút 5 bài => mỗi bài 3 phút =))))
Xem ai hốt được 50 k =150 điểm của bạn này =))
Ta có \(\frac{1}{9S}=\frac{9^{2017}+\frac{1}{9}}{9^{2017}+1}\)= \(\frac{9^{2017}+1-\frac{8}{9}}{9^{2017}+1}=1-\frac{\frac{8}{9}}{9^{2017}+1}\)
\(\frac{1}{9M}=\frac{9^{2016}+\frac{1}{9}}{9^{2016}+1}\)= \(\frac{9^{2016}+1-\frac{8}{9}}{9^{2016}+1}=1-\frac{\frac{8}{9}}{9^{2016}+1}\)
Vì \(9^{2016}+1< 9^{2017}+1\)=> \(\frac{\frac{8}{9}}{9^{2016}+1}>\frac{\frac{8}{9}}{9^{2017}+1}\)
=> \(1-\frac{\frac{8}{9}}{9^{2016}+1}< 1-\frac{\frac{8}{9}}{9^{2017}+1}\)=> \(\frac{1}{9}S< \frac{1}{9}M\Rightarrow S< M\)