K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có biểu thức \(A=2x\left(x+2y\right)-x+4-2y\)

a) Thay \(x=-1;y=2\) vào biểu thức trên, ta có :

\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]-\left(-1\right)+4-2.2\)

\(A=\left(-2\right)+3+1+4-4=\left(-2\right)+4=2\)

b) Xét 2 trường hợp của \(|y|=3:y=3;y=-3\) và thay x = 1 vào các biểu thức

Có TH1 : \(A=2.1\left(1+2.3\right)-1+4-2.1=12-1+4=15\). TH2 :

 \(A=2.1\left[1+2\left(-3\right)\right]-1+4-2.\left(-3\right)=\left(-10\right)-1+4-\left(-6\right)=-1\)

c) Thay \(x=-2y\) vào biểu thức, ta có : \(A=2x\left[\left(-2y\right)+2y\right]-x+4+x\)

\(A=2x.0+\left(x-x\right)+4=0+0+4=4\)

Ôí chồi chồi chồi ! 

\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]....\)

''....'' lak vế sau 

Cậu giỏi ghê, bên trên lak nhân DẤU nhân đấy.

5 tháng 5 2020

\(a,5x^3-3x^2+x-x^3-4x^2-x\)

\(=4x^3-7x^2\)

\(b,y^2+2y-2y^2-3y+3\)

\(=-y^2-y+3\)

\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)

\(=\frac{1}{6}x^3-2x^2-5x+1\)

\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)

\(=xy^2+\frac{1}{6}y^2\)

\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)

\(=3xy-\frac{3}{2}z^2y+2zy^2\)

\(g,3^n+3^{n+2}\)

\(=3^n+3^n.3^2\)

\(=3^n\cdot10\)

\(h,1,5\cdot2^n-2^{n-1}\)

\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)

\(=2^n\cdot1\)

\(=2^n\)

\(i,2^n-2^n-2\)

\(=-2\)

\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)

\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)

\(=3^n\cdot\frac{1}{3}\)

\(=\frac{3^n}{3}\)

sẵn bán nick luôn :)

Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !

a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)

b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)

c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)

d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)

e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)

g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )

h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

i, \(2^n-2^n-2=-2\)

k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

Có j sai,mong mọi người góp ý,thông cảm ạ.

5 tháng 10 2015

a)\(\frac{z}{5}=\frac{x}{2}=\frac{y}{3}=\frac{x.y-z}{2.3-5}=\frac{810}{1}=810\)

Từ \(\frac{x}{2}=810=>x=810.2=1620\)

Từ \(\frac{y}{3}=810=>y=2430\)

Từ \(\frac{z}{5}=810=>z=810.5=4050\)

Vậy x=1620

y=2430

z=4050

5 tháng 10 2015

tỉ lệ thức làm gì có kiểu x.y-z/a.b-c như vậy chứ

21 tháng 4 2020

a)\(\frac{-1}{4}x^2y-\frac{1}{4}x^2y=-\frac{1}{2}x^2y.\)

thay x=1,y=-1 vào ta được:

\(-\frac{1}{2}.1^2.\left(-1\right)=\frac{1}{2}.\)

b)\(3x^2y^3+3x^2y^3=6x^2y^3.\)

thay x=1,y=-1 vào ta được:

\(6.1^2.\left(-1\right)^3=6.1.\left(-1\right)=-6.\)

c) \(6x^3y^4z-4x^3y^4z=2x^3y^4z.\)

Thay x=1,y=-1,z=2 vào ta được:

\(2.1^3.\left(-1\right)^4.2=2.1.1.2=4.\)

d) Thay x=1,y=-1,z=2 vào ta được:

\(1-2.\left(-1\right)^2+2^3=1-2+8=7.\)

Đầy đủ quá rồi đấy. Giữ lời hứa nha

Học tốt

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

11 tháng 4 2018

a/ Ta có \(\left|\frac{5}{6}-2x\right|=\frac{7}{8}\)

=> \(\orbr{\begin{cases}\frac{5}{6}-2x=\frac{7}{8}\\\frac{5}{6}-2x=\frac{-7}{8}\end{cases}}\)=> \(\orbr{\begin{cases}-2x=\frac{1}{24}\\-2x=\frac{-41}{24}\end{cases}}\)=> \(\orbr{\begin{cases}x=-\frac{1}{48}\\x=\frac{41}{48}\end{cases}}\)

Vậy \(x=-\frac{1}{48}\)hoặc \(x=\frac{41}{48}\)thì \(\left|\frac{5}{6}-2x\right|=\frac{7}{8}\)

b/ Ta có \(B=5x^2-7y+6\)

Thay \(x=\frac{-1}{5}\)và \(y=\frac{-3}{7}\)vào biểu thức B, ta có:

\(5\left(-\frac{1}{5}\right)^2-7\left(-\frac{3}{7}\right)+6\)\(\frac{1}{5}-\left(-3\right)+6=\frac{1}{5}+3+6=\frac{1}{5}+9=\frac{46}{5}\)

Vậy giá trị của biểu thức B bằng \(\frac{46}{5}\)khi \(x=\frac{-1}{5}\)và \(y=\frac{-3}{7}\).

11 tháng 4 2018

a/ Ta có  6 5 − 2x = 8 7 =>  6 5 − 2x = 8 7 6 5 − 2x = 8 −7 =>  −2x = 24 1 −2x = 24 −41

=>  x = − 48 1 x = 48 41 Vậy x = − 48 1 hoặc x = 48 41 thì  6 5 − 2x = 8 7

b/ Ta có B = 5x 2 − 7y + 6 Thay x = 5 −1 và y = 7 −3 vào biểu thức B, ta có: 5 − 5 1 2 − 7 − 7 3 + 6=  5 1 − −3 + 6 = 5 1 + 3 + 6 = 5 1 + 9 = 5 46

Vậy giá trị của biểu thức B bằng  5 46 khi x = 5 −1 và y = 7 −3 .

12 tháng 11 2018

P=x3+x2y-2x2-y(x+y)+3y+x+2018

P=x2.(x+y-2)-y.(x+y)+3y+x+2018

Thay x+y=2 vào P ta có :

P=x2.(2-2)-2y+3y+x+2018

P=0.x2+y+x+2018

P=0+2+2018(x+y=2)

P=2020 

Vậy với x+y=2 thì P=2020

Mik tham khảo thêm ở bài bạn này nha https://olm.vn/hoi-dap/detail/102286367829.html