Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{IOK}=\widehat{BOC}-\widehat{BOI}-\widehat{KOC}=\widehat{BOC}-60^o\)
Mà \(\widehat{BOC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-\left(\frac{\widehat{B}}{2}+\frac{\widehat{C}}{2}\right)=180^o-\frac{180^o-\widehat{A}}{2}=180^o-30^o=150^o\)
\(\Rightarrow\widehat{IOK}=150^o-60^o=90^o\Rightarrow OI\perp OK\)
b) Ta có: \(\widehat{BOE}=\widehat{COD}=180^o-30^o-90^o-30^o=30^o\)
Xét \(\Delta BEO;\Delta BIO\); có:
\(\widehat{B_1}=\widehat{B_2}\left(gt\right);\) Chung BO \(;\widehat{IOB}=\widehat{EOB}=30^o\)
=> \(\Rightarrow\Delta BEO=\Delta BIO\left(g.c.g\right)\Rightarrow BE=BI.\)
Tương tự thì KC=DC
Mà BC>BI+KC => BE > BE+DC
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )
LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ
Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)
Xét tam giác MAB và tam giác MAC
MB=MC(tam giác MBC đều)
Chung MA
AB=AC(tam giác ABC cân tại A)
=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA
=> góc BMA=30 độ
Xét tam giác BMA và tam giác BCD
góc BMA=BCD(=30)
BM=BC(tam giác MBC đều)
goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )
=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40
=> BAD=(180-40)/2=70
Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)
Xét tam giác BIA và tam giác CIA
AB=AC ( ABC cân tại A)
ABI=ACI(=10)
BI=CI(do BIC đều)
=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20
Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)
Do đó BAI=BDC hay BDC=20
a) Xét Δ ABD và Δ EBD có:
BA = BE (gt)
ABD = EBD (vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, Δ ABD = Δ EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng) (đpcm)
b) Δ ABD = Δ EBD (câu a) => BAD= BED = 90o (2 góc tương ứng)
a,
xét tam giác ABD và EBD
BA = BE
ABD = DBC
BD chung
=> tam giác ABD = EBD ( c.g.c )
=> AD = ED ( 2 cạnh tương ứng )
b,
TA có tam giác ABD = EBD ( cmt )
=> BAD = BED ( 2 góc tương ứng )
mà A = 90 => BED = 90