Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )
A B C H
Cm: Xét t/giác ABH và t/giác ACH
có góc B = góc C (vì t/giác ABC cân tại A)
AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> HB = HC (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)
Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = HB2 + AH2
=> AH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xem lại đề
Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa
bài 1: em tự kẻ hình nha
a, Xét 2 tam giác AMB và CME ta có: góc AMB= góc CME( đối đỉnh), AM=MC(gt),BM=ME(gt)
Vậy 2 tam giác AMB=CME(c-g-c)
b, Ta có: AM=MC, BM=ME nên AECB là hình bình hành
Vậy AE=BC và AE song song với BC
c, Vì AEBC là hình bình hành nên góc BAC= góc ACE( so le trong do AB song song với CE vì AECB là hbh)
Vậy ACE=90 độ hay CE vuông góc với AC
a) Xét ∆ vuông ECB và ∆ vuông DBC ta có :
BC chung
ABC = ACB ( ∆ABC cân tại A )
=> ∆ECB = ∆DBC (ch-gn)
=> BD = CE ( tương ứng)
b) Vì ∆ECB = ∆DBC (cmt)
=> EB = DC ( tương ứng)
Xét ∆ vuông EOB và ∆ vuông DOC có :
EOB = DOC ( đối đỉnh)
EB = DC (cmt)
=> ∆EOB = ∆DOC ( cgv-gn)
c) Vì EB + AE = AB
DC + DA = AC
Mà AB = AC ( ∆ABC cân tại A )
EB = DC (cmt)
=> AE = AD
=> ∆AED cân tại A
Vì ∆EOB = ∆DOC (cmt)
=> EBO = DCO ( tương ứng)
Xét ∆ vuông AOB và ∆ vuông AOC ta có :
AE = AD (cmt)
EBO = DCO (cmt)
=> ∆AOB = ∆AOC (cgv-gn)
=> BAO = CAO
Hay AO là phân giác BAC
d) Vì ∆ADE cân tại A (cmt)
Mà AO là phân giác BAC
=> AO là trung trực ED
f) Ta có : ∆ABC cân tại A
Mà AI là trung tuyến
=> AI là phân giác BAC
Mà AO là phân giác BAC
=> A,O,I thẳng hàng
g) Vì ∆ADE cân tại A
=> AED = \(\frac{180°-BAC}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°-BAC}{2}\)
=> AED = ABC
Mà 2 góc này ở vị trí đồng vị
=> ED //BC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
d: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng
A) XÉT \(\Delta AEN\)VÀ\(\Delta AFN\)CÓ
\(\widehat{BAM}=\widehat{CAM}\)HAY\(\widehat{EAN}=\widehat{FAN}\)
AN LÀ CẠNH CHUNG
\(\widehat{ANE}=\widehat{ANF}=90^o\)
=>\(\Delta AEN\)=\(\Delta AFN\)(g-c-g)
=> AE = AF ( HAI CẠNH TƯƠNG ỨNG )
B)
Xét 2 \(\Delta\) BME và CMF
BM=CM
^ BME=^ CMF(ĐĐ)
^EBM= ^ ACB( Góc ngoài tam giác tại B)
=> \(\Delta\) BME= \(\Delta\)CMF(G.C.G)
=> BE=CF( 2 cạnh tương ứng)
C)\(AE=AF\)
\(\Rightarrow2AE=AE+AF\)
\(=AE+AC+CF\)
\(=AE+AC+BE\)
\(=AB+AC\Rightarrow AE=\frac{AB+AC}{2}\left(ĐPCM\right)\)