K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

a, \(\Delta=\left(m-2\right)^2-4\left(-6\right)=\left(m-2\right)^2+24>0\)

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-6\end{cases}}\)

Ta có : x1 là nghiệm PT(1) thay vào ta được ( mình sửa luôn đề nhé)

\(\left(m-2\right)x_1+6-x_1x_2+\left(m-2\right)x_2=16\)

\(\Leftrightarrow\left(m-2\right)\left(x_1+x_2\right)-x_1x_2=10\)

Thay vào ta được \(\left(m-2\right)^2-\left(-6\right)=10\Leftrightarrow\left(m-2\right)^2=4\)

TH1 : \(m-2=2\Leftrightarrow m=4\)

TH2 : \(m-2=-2\Leftrightarrow m=0\)

b, 2 nghiệm cùng dấu âm 

\(\hept{\begin{cases}\Delta\ge0\\S< 0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-2\right)^2+24\ne0\left(luondung\right)\\m-2< 0\\-6>0\left(voli\right)\end{cases}}}\)

Vậy ko giá trị m tm 2 nghiệm cùng âm 

a, \(x^2-mx+m-1=0\)

Thay m = 4 ta đc : 

\(x^2-4x+4-1=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

7 tháng 4 2020

Đề bài 1 có nhầm chỗ nào không bạn ???

Bài 3 : 

( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)

\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì  \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)

\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)

Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)

<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b ) 

7 tháng 4 2020

B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn

1 tháng 6 2019

\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)

Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)

Với \(m\le3\), theo hệ thức Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)

Vì \(x_1^3+x_2^3< 100\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)

\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)

\(\Leftrightarrow14-2m-m-1< 25\)

\(\Leftrightarrow13-3m< 25\)

\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)

Vậy \(-4< m\le3\)

nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3

28 tháng 5 2018

\(x^2-2\left(m+2\right)x+\left(m+2\right)^2-1=0.\)

\(x^2-2\left(m+2\right)x+\left\{\left(m+2\right)^2-1\right\}=0\)

\(\hept{\begin{cases}a=1\\b=-2\left(m+2\right)\\c=\left\{\left(m+2\right)^2-1\right\}\end{cases}}\)

\(\Delta'=\left(m+2\right)^2-\left\{\left(m+2\right)^2-1\right\}=1\) 

\(\Delta'>0\)

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-m-2+1=-1.\)

\(x_2=-m-2-1=-3\)

có \(\Delta'=\left(m+2\right)^2-\left(m+2\right)^2+1=1\) để ý phần này

m = bao nhiêu thì denta vẫn =1  

vậy vs mọi giá trị của M thì denta vẫn = 1 , và pt có 2 nghiêm x1,x2

28 tháng 5 2018

bn ơi bạn giải các cc j vây 

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

4 tháng 5 2019

Áp dung Vi-ét ta có:

x+ x2 =\(\frac{-b}{a}\)=\(\frac{2\left(m-2\right)}{1}\) = 2(m - 2) = 2m - 4

x1x2=\(\frac{c}{a}\)=\(\frac{-3m+10}{1}\)= -3m + 10

A = x12 - x22 = (x1 + x2)2 - 4x1x2 = (2m - 4)2 - 4(-3m + 10) = 4m2 - 4m -24 = (2m - 1)2 - 25 \(\ge25\)

Dấu "=" xảy ra khi 2m - 1 = 0 \(\Leftrightarrow m=\frac{1}{2}\)

Vậy giá trị lớn nhất của A là 25 khi m = \(\frac{1}{2}\)