K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(15\cdot91.5+150\cdot0.85\)

\(=15\cdot91.5+15\cdot8.5\)

=1500

15 . 91,5 + 150 . 0,85

= 15 . 91,5 + 15 . 8,5

= 15 . ( 91,5 + 8,5 )

= 15 . 100

= 1500

1.a) (3x+1)2-4(x-2)2= (3x+1)2-[2(x-2)]2=[(3x+1)-2(x-2)][(3x+1)+2(x-2)]=(x+3)(5x-1)

b) (a2+b2-5)2-4(ab+2)2= (a2+b2-5)2-[2(ab+2)]2 = (a2+b2-5-2ab-4)(a2+b2-5+2ab+4)=[(a-b)2-9][(a+b)2-1]

2. 3x2+9x-30=3x2-6x+15x-30=3x(x-2)+15(x-2)=3(x+5)(x-2)

b. x3-5x2-14x=x3+2x2-7x2-14x=x2(x+2)-7x(x+2)=(x2-7x)(x+2)

23 tháng 7 2018

a) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)

\(=\left(3x+1\right)^2-\left[2.\left(x-2\right)\right]^2\)

\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)

\(=\left[3x+1-2x+4\right].\left[3x+1+2x-4\right]\)

\(=\left(x+5\right)\left(5x-3\right)\)

b) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left[2.\left(ab+2\right)\right]^2\)

\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)

\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)

\(=\left[\left(a-b\right)^2-9\right].\left[\left(a+b\right)^2-1\right]\)

\(=\left[\left(a-b-3\right)\left(a-b+3\right)\right].\left[\left(a+b-1\right)\left(a+b+1\right)\right]\)

a) \(3x^2+9x-30\)

\(=3\left(x^2+3x-10\right)\)

\(=3\left(x^2-2x+5x-10\right)\)

\(=3.\left[x\left(x-2\right)+5.\left(x-2\right)\right]\)

\(=3.\left[\left(x+5\right)\left(x-2\right)\right]\)

b) \(x^3-5x^2-14x\)

\(=x\left(x^2-5x-14\right)\)

\(=x\left(x^2+2x-7x-14\right)\)

\(=x.\left[x\left(x+2\right)-7.\left(x+2\right)\right]\)

\(=x.\left[\left(x-7\right)\left(x+2\right)\right]\)

21 tháng 7 2015

37,5(6,5+3,5)+7,5(3,4+6,6)

37,5.10+7,5.10

450

21 tháng 7 2015

37,5(6,5+3,5)-7,5(6,6+3,4)

37,5.10-7,5.10

300

21 tháng 7 2018

Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

(3x + 2)^2 + (3x - 2)^2 - 2(9x^2 - 4)

\(=\left(3x+2\right)^2-2\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\)

\(=\left(3x+2-\left(3x-2\right)\right)^2\)

\(=\left(3x+2-3x+2\right)^2\)

\(=4^2\)

\(=16\)

21 tháng 7 2018

\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)

\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2.\left(3x-2\right)\left(3x+2\right)\)

\(=\left(3x+2-3x+2\right)^2\)

\(=4^2=16\)

21 tháng 7 2018

\(x^3+6x^2+9x\)

\(=x\left(x^2+6x+9\right)\)

\(=x\left(x^2+2.x.3+3^2\right)\)

\(=x\left(x+3\right)^2\)

21 tháng 7 2018

x^3 +6x^2 +9x =x(x^2+ 6x +9)

                      =x(x+3)^2

31 tháng 7 2018

37,5.6,5 – 7,5.3,4 – 6,6.7.5 + 3,5.37,5

(Hạng tử đầu tiên và cuối cùng đều có nhân tử 37,5; hai hạng tử giữa đều có nhân tử 7,5)

= (37,5.6,5 + 3,5.37,5) – (7,5.3,4 + 6,6.7,5)

= 37,5(6,5 + 3,5) – 7,5(3,4 + 6,6)

= 37,5.10 – 7,5.10

= 375 – 75 = 300

10 tháng 8 2023

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)

\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)

\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)