\(\sqrt{27\left(9-4\sqrt{5}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

a) \(\sqrt{27\left(9-4\sqrt{5}\right)}=3\sqrt{3\left(\sqrt{5}-2\right)^2}=3\sqrt{3}\left(\sqrt{5}-2\right)=3\sqrt{15}-6\sqrt{3}\)

b) \(\sqrt{a^4b^5}=a^2b^2\sqrt{b}\)

c) \(\sqrt{a^3\left(1-a\right)^4}=a\left(1-a\right)^2\sqrt{a}\)

d) không biết

6 tháng 7 2017

a, \(\sqrt{5\left(1-\sqrt{2}\right)^2}=\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\sqrt{5}.\left(1-\sqrt{2}\right)=\sqrt{5}-\sqrt{5}.\sqrt{2}=\sqrt{5}-\sqrt{10}\)

b, \(\sqrt{27\left(2-\sqrt{5}\right)^2}=\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\sqrt{27}.\left(2-\sqrt{5}\right)=2\sqrt{27}-\sqrt{135}\)

c, \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}=\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)

\(=\dfrac{\sqrt{2}}{3-\sqrt{10}}\)

d, \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}=\dfrac{\sqrt{5\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)

\(=\dfrac{\sqrt{5}.\left(1-\sqrt{3}\right)}{2}=\dfrac{\sqrt{5}-\sqrt{15}}{2}\)

Chúc bạn học tốt!!!

6 tháng 7 2017

a) \(\sqrt{5\left(1-\sqrt{2}\right)^2}\)

= \(\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)

= \(\sqrt{5}.\left(\sqrt{2}-1\right)\)

= \(\sqrt{10}-\sqrt{5}\)

b) \(\sqrt{27\left(2-\sqrt{5}\right)^2}\)

= \(\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)

= \(\sqrt{27}.\left(\sqrt{5}-2\right)\)

= \(\sqrt{135}-2\sqrt{27}\)

c) \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}\)

= \(\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)

= \(\dfrac{\sqrt{2}}{\sqrt{10}-3}\)

d) \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}\)

= \(\dfrac{\sqrt{5}.\sqrt{\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)

= \(\dfrac{\sqrt{5}.\left(\sqrt{3}-1\right)}{2}\)

= \(\dfrac{\sqrt{15}-\sqrt{5}}{2}\)

Bài 2: 

a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)

b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)

a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)

b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)

\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)

c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)

4 tháng 10 2017

Câu 1 :

a ) \(\sqrt{0,36.100}=\sqrt{36}=6\)

b ) \(\sqrt[3]{-0,008}=\sqrt[3]{\left(-0,2\right)^3}=-0,2\)

c ) \(\sqrt{12}+6\sqrt{3}+\sqrt{27}=2\sqrt{3}+6\sqrt{3}+3\sqrt{3}=11\sqrt{3}\)

4 tháng 10 2017

Câu 2 :

a ) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}=a-\sqrt{ab}+b\)

15 tháng 7 2021

\(\sqrt{96}.\sqrt{125}\)

\(\sqrt{16.6}\sqrt{25.5}\)

\(4.5\sqrt{6.5}\)

\(20\sqrt{30}\)

\(b,\sqrt{a^4b^5}\)

\(a^2b^2\sqrt{b}\)

\(c,\sqrt{a^6b^{11}}\)

\(a^3b^5\sqrt{b}\)

\(d,\sqrt{a^3\left(1-a\right)^4}\)

\(a\left(1-a\right)^2\sqrt{a}\)

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

a: \(=\dfrac{10}{9}\left(\dfrac{2}{5}\sqrt{5}+\dfrac{1}{2}\sqrt{5}\right)=\dfrac{10}{9}\cdot\dfrac{9}{10}\sqrt{5}=\sqrt{5}\)

b: \(=\dfrac{4}{3}\sqrt{2}+\sqrt{2}+\dfrac{1}{6}\sqrt{2}=\dfrac{5}{2}\sqrt{2}\)

c: \(=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

d: \(=6\sqrt{a}+\dfrac{2}{3}\cdot\dfrac{1}{2}\sqrt{a}-3\sqrt{a}+7=\dfrac{10}{3}\sqrt{a}+7\)

Bài 4: 

a: ĐKXĐ: x>=0; x<>1

b: \(P=\dfrac{2a^2+4}{1-a^3}-\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\)

\(=\dfrac{2a^2+4}{-\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{-\sqrt{a}+1+\sqrt{a}+1}{a-1}\)

\(=\dfrac{-2a^2-4}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{2}{a-1}\)

\(=\dfrac{-2a^2-4+2a^2+2a+2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{2a+2}{\left(a-1\right)\left(a^2+a+1\right)}\)