Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (−2).3....> hoặc \(\ge\).....(−2).5(−2).3.........(−2).5
b) 4.(−2)...< hoặc \(\le\)....(−7).(−2)4.(−2).......(−7).(−2)
c) (−6)2+2....\(\le\) hoặc \(\ge\)....36+2(−6)2+2........36+2
d) 5.(−8).....> hoặc \(\ge\).....135.(−8)
a)ta có:(-2).3=-6 ; (-2).5=-10
Vì -6>-10 nên (-2).3>(-2).5
b)Ta có:4.(-2)=-8 ; (-7).(-2)=14
vì -8<14 nên 4.(-2)<(-7).(-2)
c)Ta có:(-6)2+2=36+2=38 ; 36+2=38
Vì 38=38 nên (-6)2+2=36+2
d)Ta có:5.(-8)=-40 ; 135.(-8)=-1080
Vì -40>-1080 nên 5.(-8) > 135.(-8)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
a) \(7+2x=22-3x\)
\(\Leftrightarrow5x=15\Leftrightarrow x=3\)
b) \(8x-3=5x+12\)
\(\Leftrightarrow3x=15\Leftrightarrow x=5\)
c) \(x-12+4x=25+2x-1\)
\(\Leftrightarrow3x=36\Leftrightarrow x=12\)
d) \(x+2x+3x-19=3x+5\)
\(\Leftrightarrow3x=24\Leftrightarrow x=8\)
e) \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow x=7\)
f) \(\left(x-1\right)-\left(2x-1\right)=9-x\)
\(\Leftrightarrow0x=9\) ( vô lí )
Bài1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
Ta có:
\(\left(-8\right)^9=-2^{27}\)
\(\left(-32\right)^5=\left(-8.4\right)^5=-2^{27}.2^{10}\)
Vì \(-2^{27}.10< -2^{27}\) nên \(\left(-8\right)^9>\left(-32\right)^5\)
Các câu sau tương tự
Bài2:
\(a,2\left|x-1\right|-3x=7\)
+)Xét \(x\ge1\Rightarrow\left|x-1\right|=x-1\)
Do đó:
\(2\left(x-1\right)-3x=7\\ \Leftrightarrow2x-2-3x=7\\ \Leftrightarrow-x=9\\ \Leftrightarrow x=-9\left(loại\right)\)
+)Xét \(x< 1\Rightarrow\left|x-1\right|=1-x\)
Do đó:
\(2\left(1-x\right)-3x=7\\ \Leftrightarrow2-2x-3x=7\\ \Leftrightarrow-5x=5\\ x=-1\left(chon\right)\)
Vậy x=-1
Câu b tương tự
Bài 1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
\(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)
\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)
\(\left(-2\right)^{27}< \left(-2\right)^{25}\)
\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)
\(b,2^{21}\) và \(3^{14}\)
\(2^{21}=\left(2^3\right)^7\)
\(3^{14}=\left(3^2\right)^7\)
\(2^3< 3^2\)\(\Rightarrow2^{21}< 3^{14}\)
\(c,12^8\) và \(8^{12}\)
\(12^8=\left(12^2\right)^4=144^4\)
\(8^{12}=\left(8^3\right)^4=512^4\)
\(144^4< 512^4\)\(\Rightarrow12^8< 8^{12}\)
\(d,\left(-5\right)^{39}\) và \(\left(-2\right)^{91}\)
\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}\)
\(\left(-5\right)^3>\left(-2\right)^7\)\(\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)
Bài 2:
\(a,2.\left|x-1\right|-3x=7\)
\(\left|x-1\right|=\dfrac{7+3x}{2}\)
Ta có 2 trường hợp:
Th1:\(x-1=\dfrac{7-3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{7+3x}{2}\)
\(\Rightarrow2x-2=7+3x\)
\(2x-3x=7+2\)
\(-x=9\Rightarrow x=-9\)
Th2:\(x+1=-\dfrac{7+3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{-7-3x}{2}\)
\(\Rightarrow2x-2=-7-3x\)
\(2x+3x=-7+2\)
\(5x=-5\Rightarrow x=-1\)
Vậy \(x\in\left\{-9;-1\right\}\)
\(b,\left|5x-3\right|=\left|7-x\right|\)
Ta có: Th1: \(\left|7-x\right|=7-x\) khi \(7-x\ge0\)\(\Rightarrow x\le7\)
\(5x-3=7-x\)
\(5x+x=7+3\)
\(6x=10\Rightarrow x=\dfrac{10}{6}=\dfrac{5}{3}\)( thoả mãn )
vì x thoả mãn \(x\le7\)\(\Rightarrow\) th1 thoả mãn x
Ta có: Th2: \(\left|7-x\right|=-\left(7-x\right)\) khi \(7-x< 0\Rightarrow x>7\)
\(5x-3=-\left(7-x\right)\)
\(5x-3=-7+x\)
\(5x-x=-7+3\)
\(4x=-4\Rightarrow x=-1\) ( loại )
Vì x thoả mãn \(x>7\) mà \(x=-1\Rightarrow\)th2 loại
câu a tự quy đồng cùng mẫu rồi làm thôi :"))
b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)
Đặt \(x^2-x=k\), ta có:
\(k.\left(k-2\right)=24\)
\(\Leftrightarrow k^2-2k+1=25\)
\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)
\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)
c)\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)
\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)
p/s: bn tự kết luận nha :))
a)
$A=(1^2-2^2)+(3^2-4^2)+....+(2003^2-2004^2)+2005^2$
$=(1-2)(1+2)+(3-4)(3+4)+....+(2003-2004)(2003+2004)+2005^2$
$=-(1+2)-(3+4)-...-(2003+2004)+2005^2$
$=-(1+2+3+...+2004)+2005^2=-\frac{2004.2005}{2}+2005^2$
$=2005^2-1002.2005=2005(2005-1002)=2011015$
b)
$B=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{16}-1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{32}-1)(2^{32}+1)-2^{64}$
$=2^{64}-1-2^{64}=-1$
c) Do $x=16$ nên $x-16=0$
$R(x)=x^4-17x^3+17x^2-17x+20$
$=(x^4-16x^3)-(x^3-16x^2)+x^2-16x-x+20$
$=x^3(x-16)-x^2(x-16)+x(x-16)-x+20$
$=x^3.0-x^2.0+x.0-x+20=-x+20=-16+20=4$
d) Do $x=12$ nên $x-12=0$. Khi đó:
$S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+(x^2-12x)-x+10$
$=x^9(x-12)-x^8(x-12)+x^7(x-12)-....+x(x-12)-x+10$
$=(x-12)(x^9-x^8+x^7-....+x)-x+10$
$=0-x+10=-x+10=-12+10=-2$
a) 12 + (-8) > 9 + (-8)
b) 13 - 19 < 15 - 19
c) (-4)2 + 7 ≥ 16 + 7
d) 452 + 12 > 450 + 12
a,>
b,<
c,\(=\)
d,>