Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là chiều cao của tháp, ta có:
\(\tan34\) = \(\dfrac{c.đối}{c.kề}\)= \(\dfrac{a}{86}\)
\(\Rightarrow a=\) \(\tan34.86\) \(\approx\) 58m
Vậy chiều cao của tháp là 58m
Kí hiệu đỉnh như hình vẽ. Theo hệ thức giữa các cạnh và góc của tam giác vuông, ta có:
A B = A C . t g 34 ° = 86 . t g 34 ° ≈ 58 ( m )
Vậy chiều cao tòa nhà là 58m.
Kí hiệu đỉnh như hình vẽ. Theo hệ thức giữa các cạnh và góc của tam giác vuông, ta có:
AB = AC.tg34o = 86.tg34o ≈ 58 (m)
Vậy chiều cao tòa nhà là 58m.
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=\sqrt[3]{3^3}+\sqrt[3]{2^3}-\sqrt[3]{5^3}=3+2-5=0\)
b) \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{\frac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)
A B M H O C D I
a) Áp dụng tính chất hai tiếp tuyến giao nhau: ^HMC = 2.^AMH; ^HMD = 2.^BMH
Suy ra ^HMC + ^HMB = 2(^AMH + ^BMH) = 1800 => 3 điểm C,M,D thẳng hàng (đpcm).
Có C,M,D thẳng hàng, Do C,D thuộc (M;MH) nên CD là đường kính của (M;MH)
Khi đó MO là đường trung bình của hình thang vuông ACDB => MO // AC // BD
=> MO vuông góc CD => CD là tiếp tuyến của (O) (đpcm).
b) Dễ thấy AC + BD = AH + BH = 2R (R là bán kính của (O)) (không đổi).
c) Áp dụng hệ thức lượng trong tam giác vuông IMO có OH.OI = OM2 = R2 (không đổi).
Giải:
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3-\left(-2\right)-5=3+2-5=0\)
b)\(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\cdot\sqrt[3]{4}=\frac{\sqrt[3]{27\cdot5}}{\sqrt[3]{5}}-\sqrt[3]{54\cdot4}=\frac{\sqrt[3]{27}\cdot\sqrt[3]{5}}{\sqrt[3]{5}}-\sqrt[3]{216}=3-6=-3\)
Gỉa sử chiều cao của tháp là BH , mặt đất là AH
Xét \(\Delta\)ABH , \(\widehat{H}\)= 90 \(^o\)
BH = AH tan 34\(^o\)
= 86 tan 34\(^o\)
\(\approx\) 58 m
Vậy chiều cao của tháp khoảng 58 m
ác tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng \(34^0\) và bóng của một tháp trên mặt đất dài 86m (h.30). Tính chiều cao của tháp (làm tròn đến mét)