Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^2+2x+3\)
\(\Leftrightarrow x^2+2x+1+2\)
\(\Leftrightarrow\left(x+1\right)^2+2\)
Vì \(\left(x+1\right)^2\ge0\)=>\(\left(x+1\right)^2+2\ge2\)
Vậy PT ko có nghiệm
\(x^2+2x+3=0\)
\(\Rightarrow x^2+2x+1+2=0\)
\(\Rightarrow\left(x+1\right)^2+2=0\)( vô lý )
=> Đa thức vô nghiệm
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
a>P(x)+Q(x)=(x4+2x3+2x2-x)+(x4-2x3+x+1)
=x4+2x3+2x2-x+x4-2x3+x+1
=(x4+x4)+(2x3 -2x3)+2x2-(x+x)+1
=2x 4+2x2+1
R(x)=2x4+2x2+1
b> Vì 2x4 lớn hơn hoặc bằng 0 với mọi x
2x2lớn hơn hoặc bằng 0 với mọi x
=>2x4+2x2+1 lớn hơn 0 với mọi x
=>R(x) vô nghiệm
nếu đ tik cho mk nha
x^2 + 4x + 5
= x^2 + 2x +2x +4 + 1
= x(x+2) + (2x+4)+1
= x(x+2) + 2(x+2) +1
= (x+2)^2 + 1
Có (x+2)^2 >= 0 với mọi x
=> (x+2)^2 + 1 >= 1 > 0
=> (x+2)^2 + 1 > 0
hay x^2 + 4x +5 > 0
Vậy đã thức trên vô nghiệm
ban xem cong thuc giai pt bac 2 lop 9 thi bai nao dang nay ban cung giai dc
hay chiu kho tim hieu bạn se giai dc het ok chuc hoc joi
Ta có: \(f\left(x\right)=x^2-x-x+2\)
\(\Rightarrow f\left(x\right)=x^2-x-x+1+1\)
\(\Rightarrow f\left(x\right)=x.\left(x-1\right)-\left(x-1\right)+1\)
\(\Rightarrow f\left(x\right)=\left(x-1\right).\left(x-1\right)+1\Rightarrow f\left(x\right)=\left(x-1\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+1\ge1>0\)
Hay f(x)>0 với mọi giá trị của \(x\in R\)
Do đó không tìm được giá trị nào của x để đa thức f(x)=0
Vậy đa thức f(x) vô nghiệm (đpcm)
Chúc bạn học tốt!!!
f(x)=x2 - x - x + 2= x2- x -x+1+1
=x(x-1)-(x-1)+1=(x-1)(x-1)+1=(x-1)2+1
Do (x-1)2\(\ge\)0 (\(\forall\)x)
Suy ra (x-1)2\(\ge\)1>0
Vậy f(x) vô nghiệm
a) Đặt F(x)=0
⇔\(3x^2-6x+3x^3=0\)
\(\Leftrightarrow3x^3+3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)
mà 3>0
nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)
Vậy: Sf(x)={0;-2;1}(1)
c) Thay x=0 vào đa thức g(x), ta được:
\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)
\(=-9+0+0+0=-9\)
mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)
Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)
1) Để đa thức f(x) có nghiệm thì:
\(x^3+2x^2+ax+1=0\)
\(f\left(-2\right)=\left(-2\right)^3+2\left(-2\right)^2+a\left(-2\right)+1=0\)
\(\Rightarrow-8+8-2a+1=0\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Vậy a = \(\dfrac{1}{2}\).
2) Để đa thức f(x) có nghiệm thì:
\(x^2+ax+b=0\)
\(f\left(1\right)=1^2+a.1+b=0\Rightarrow a+b+1=0\)(1)
\(f\left(2\right)=2^2+a.2+b=0\Rightarrow2a+b+4=0\)
\(f\left(2\right)-f\left(1\right)=\left(2a+b+4\right)-\left(a+b+1\right)=0\)
\(\Rightarrow2a+b+4-a-b-1=0\)
\(\Rightarrow a+3=0\Rightarrow a=-3\)
Thay vào (1) ta có: -3 + b + 1 =0
\(\Rightarrow\) b - 2 = 0 \(\Rightarrow\) b = 2
Vậy a = -3; b = 2.
1) Ta có: x = -2 là nghiệm của f(x)
\(\Rightarrow f\left(-2\right)=\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=0\)
\(\Rightarrow f\left(-2\right)=-8+8-2a+1=0\)
\(\Rightarrow-2a+1=0\)
\(\Rightarrow-2a=-1\)
\(\Rightarrow a=0,5\)
2) Ta có: x = 1 là nghiệm của f (x)
\(\Rightarrow f\left(1\right)=1^2+a.1+b=0\)
\(\Rightarrow1+a+b=0\)
Ta có: x = 2 là một nghiệm của f (x)
\(\Rightarrow f\left(2\right)=2^2+a.2+b=0\)
\(\Rightarrow4+2a+b=0\)
\(\Rightarrow1+a+b=4+2a+b\)
\(\Rightarrow1+a+b-4-2a-b=0\)
\(\Rightarrow-3-a=0\Rightarrow a=-3\)
\(\Rightarrow1-3+b=0\Rightarrow b=2\)
Để đa thức f(x) có nghiệm thì x2-2x+2016=0
=>(x-1)2+2015=0(vô lí)
Vậy đa thức f(x) vô nghiệm
trả lời
trần thùy linh làm đúng rồi
nhưng chỗ (x-1)^2+2015=0 vô lý vì (x-1)^2>=0 nên (x-1)^2+2015>=2015 nha
viết vậy cho chặt chẽ thôi
f(x)=x2−x−x+2
x là nghiệm của đa thức f(x)
x2−x−x+1+1=0
x.(x-1)-(x-1)+1=0
(x-1).(x-1)+1=0
(x-1)2+1=0
=>(x-1)2=-1 (vô lý)
Vậy đa thức f(x) không có nghiệm
Ta có : f(x) = x2 - x - x + 2 = x2 - x - x + 1 + 1
= x(x - 1) - (x- 1) +1
= (x - 1) 2 + 1 \(\ge\)1 > 0
Vậy f(x) vô nghiệm .