Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C
Sin B = \(\frac{AC}{BC}\); cos B = \(\frac{AB}{BC}\) ; tgB = \(\frac{AC}{AB}\); cot gB = \(\frac{AB}{BC}\)
Do góc B và C là hai góc phụ nhau nên :
sin C = cos B = \(\frac{AB}{BC};cosB=\frac{AB}{BC};cosC=sinB=\frac{AC}{BC}\)
\(tgC=cotgB=\frac{AB}{BC};cotgC=tgB=\frac{AC}{AB}\)
Chúc bạn học tốt !!!
Công thức 1: Đường phân giác trong là AD:
AD = 2/ (b + c) . căn bcp (p - a)
Công thức 2:
AD = 2bc. cosA/2 / (b + c)
Đường phân giác trong góc B và C từ đó suy ra.
Cách chứng minh công thúc 1:
Sử dụng vectơ.
theo công thức đường phân giác lớp 8 ta có DB / DC = c / b
Suy ra b.vtDB = -c.vtDC
=> b. (vtDA + vtAB) = - c. (vtDA + vtAC)
=> (b + c). vtAD = b. vtAB + c. vtAC
Bình phương hai vế có
(b+c)^2 AD^2 = 2b^2c^2 + 2bc. vtAB. vtAC
Thay vtAB.vtAC = (b^2 + c^2 - a^2) / 2 (công thức)
phân tích thành nhân tử, rút gọn có đpcm.
Cách chứng minh công thức 2:
Sử dụng diện tích:
S.ABC = S.ADB + S.ADC
bc. sinA = AD.c sinA/2 + AD.b sinA/2
2bc sinA/2 .cosA/2 = AD sinA/2 (b + c)
=> AD = 2bc.cosA/2 / (b + c)
Chú ý: Có thể dùng định lí hàm cos để tính cosA/2 thay vào công thức 2 để có công thức 1.
(vtAB là vectơ AB)