K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

không tồn tại vì : ( 3a+2b)(7a+3b)-4=26032016+4:15ab=26032020=1735,3638=>>> không tồn tại

10 tháng 3 2016

Edogawa Conan bạn thiếu th \(a\ne b\)

10 tháng 11 2017

bà ngồi bà lột quần , bà ngồi bà lột áo , nói là bà nhưng có 24 tuổi à . Có 1 chú vào và lột đồ bà , cả 2 người trần truồng trong căn phòng có giường , hỏi 2 người đó làm gì , nêu tiếp câu chuyện theo hướng 18+

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

10 tháng 8 2017

ta có : \(a-b=15\Leftrightarrow a=15+b\)

thay vào \(P\) ta có \(P=\dfrac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\dfrac{3b-\left(15+b\right)}{2b-15}\)

\(P=\dfrac{45+3b-b}{30+2b+15}+\dfrac{3b-15-b}{2b-15}=\dfrac{2b+45}{2b+45}+\dfrac{2b-15}{2b-15}\)

\(P=1+1=2\) vậy \(P=2\) với \(a-b=15\)

10 tháng 8 2017

Thay a-b=15 vào P có:

\(P=\dfrac{3a-b}{2a+\left(a-b\right)}+\dfrac{3b-a}{2b-\left(a-b\right)}\)

\(=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)

=1+1=2

Vậy P=2 TM đk a-b=15;\(a\ne-7,5;b\ne7,5\)

8 tháng 11 2016

a/ Ta có \(a\left(2a-5c\right)=2a^2-5ac=2bc-5ac=c\left(2b-5a\right)\Rightarrow\frac{c}{2a-5c}=\frac{a}{2b-5a}\)

Các câu khác làm tương tự

30 tháng 7 2017

Ta có: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\dfrac{2b+c-a}{a}=2\Leftrightarrow2b+c-a=2a\Leftrightarrow2b+c=3a\Leftrightarrow c=3a-2b\)

Và : \(2b+c=3a\Leftrightarrow2b=3a-c\)

Tương tự: \(3b-2c=a\)\(2c=3b-a\)

\(3c-2a=b\)\(2a=3c-b\)

Thay vào Q, ta được:

\(Q=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)