Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Bài làm :
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a, \(S=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow S=2^{2018}-1\)
Vậy : \(S=2^{2018}-1\)
b, Ta có : \(2^{2018}-1< 2^{2018}=2^2.2^{2016}=4.2^{2016}< 5.2^{2016}\)
Vì : \(2^{2018}-1< 4.2^{2016}< 5.2^{2016}\Rightarrow S< 5.2^{2016}\)
Vậy : \(S< 5.2^{2016}\)
\(A=1+2+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(A=2^{2018-1}\)
\(>2^{14}=16384>5\cdot2017=10085\)
\(\RightarrowĐPCM\)
2S=1.2+2.22+3.23+...+2016.22016
2S-S=S=(1.2+2.22+...+2016.22016)-(1+2.2+...+2016.22015)
S=2016.22016-(1+2+...+22015)
S=2016.22016-(22016-1) (1+2+...+22015=22016-1)
S=2015.22016+1
Vậy S>2015.22016
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
Vì \(2016^{2017}>2016^{2017}-3\)
\(\Rightarrow B>\frac{2016^{2017}}{2016^{2017}-3}>\frac{2016^{2017}+2}{2016^{2017}-3+2}=\frac{2016^{2017}+2}{2016^{2017}-1}=A\)
vậy \(A< B\)
2A = 2+22 +...+22017
-
A=1+2+...+22016
--------------------------------
A = 22017 - 1 < 22017 = B
=> A<B
học tốt
A=1+21+22+23+....+22016
A=20+21+22+23+...+22016
2A=2.(20+21+22+23+...+22016)
2A=21+22+23+24+...+22016
2A-A=(21+22+23+24+...+22016)-(20+21+22+23+...+22016)
A=22017-20
A=22017-20
B=22017
=>22017-20<22017
Nên A=22017-20<B=22017
Chúc bn học tốt
cho mình hỏi dau * do nghia la sao
tôi trả lời cho 1 thằng rồi