K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

đúng rồi thưa bạn sau đó thì phải chứng minh cho 2 góc kề ở đáy bằng nhau hoặc 2 cạnh bên bằng nhau hoặc 2 đường chéo bằng nhau

30 tháng 1 2018

theo định lí ta-lét thì nó có 3 trường hợp là \(\frac{AB'}{B'B}\)=\(\frac{AB'}{AB}\)=\(\frac{B'B}{AB}\)đúng ko

Vd:hình 6 trang 59

17 tháng 7 2021

AH // BK (cùng vuông góc CD)

AB // CD (gt)

=> AH = BK (cùng cắt AB và CD)

Xét tam giác AHD và tam giác BKC ta có:

 Góc H = Góc K = 90 độ (gt)

 DH = CK (gt)

 AH = BK (cmt)

=> Tam giác AHD = Tam giác BKH (c.g.c)

=> Góc D = Góc C (hai góc tương ứng)

 Vậy: ABCD là hình thang cân

20 tháng 11 2021

Không nhé bạn, đây chỉ là tính chất của hình thang cân thôi

26 tháng 12 2016

Cho ∆ABC vuông tại A. Vẽ về phía ngoài ∆ đó ∆ABD vuông cân tại B và ∆ACE vuông cân tại C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BE. Chứng minh rằng: 1, AH = AK 2, AH.AH = BH.CK

26 tháng 12 2016

Bạn nào giải hộ mình với?

Kẻ BE//AC, E thuộc CD

Xét tứ giác ABEC có

AB//EC

AC//BE

=>ABEC là hình bình hành

=>AC=BE 

=>BE=BD

=>ΔBED cân tại B

=>góc BDE=góc BED

=>góc BDE=góc BAC

Xét tứ giác ABCD có góc BDC=góc BAC

nên ABCD là tứ giác nội tiếp

=>góc BAD+góc BCD=180 độ

mà góc ADC+góc BAD=180 độ

nên góc ADC=góc BCD
=>ABCD là hình thang cân

 

2 tháng 8 2023

e cần gấp ạa huhuhuh

28 tháng 10 2019

Vẽ ra phía ngoài hình vuông 1 tam giác đều ABE. Vì EA=EB; MA=MB nên EM là đường trung trực AB, suy ra ˆMEB=30∘
VÌ ΔEBM=ΔCBM(c.g.c), suy raˆMCB=ˆMEB=30∘⇒ˆMCD=60∘(1).
Mặt khác, ΔAMD=ΔBMC(c.g.c), suy ra: MD=MC (2)
Từ (1) & (2) =>ΔMCDđều (đpcm)

A B C D J S M x y

tam giác AMD= BMC (c-g-c)

trên nửa mặt phẳng bờ AD chứa BC kẻ Ax và Dy sao cho Ax, Dy tạo vs AD các góc 15 độ, chứng cắt nhau tại J

Tam giác AJD có góc DAJ=JDA=15 

=> t,g ADJ cân tại J

ta có t.g AJDJ= ABM (g-c-g)

=>AJ=AM  

=> t.g AMJ cân tại A mà MAJ=60 (DAJ+JAM+MAB=90)

=> t.g ẠM đều 

=>JA=JM

ta có MJS=AMJ+MAJ=60+60=120 (góc ngoài t.g)

tương tự ta có SJD=30

vậy MJD=SJM+SJD=120+30=150

lại có t.g JDM có JD=JM (cùng= JA)

=> JDM cân tại J mà góc MJD=120

=>JDM=15

ta có góc ADJ + JDM+MDC=90

                 15+15+mdc=90

                              MDC =60

tam giác MCD cân mà có góc D =60 

=> MCD là tam giác đều