\(\overline{abc}\) thỏa mãn chữ số a là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2020

Ứng với bộ 3 số phân biệt, có đúng 1 cách xếp thứ tự chúng từ nhỏ đến lớn

Trong các cặp số lẻ, có 4 cặp lẻ liền nhau (chỉ có 1 cách chọn b đứng giữa) là (1;3); (3;5); (5;7); (7;9)

Có 3 cặp cách nhau 4 đơn vị (có 3 cách chọn b đứng giữa) là (1;5); (3;7); (5;9)

Có 2 cặp lẻ sao cho có 5 cách chọn b đứng giữa (1;7); (3;9)

Có 1 cặp lẻ sao cho có 7 cách chọn b đứng giữa (1;9)

Vậy có: \(4.1+3.3+2.5+1.7=30\) số thỏa mãn

8 tháng 7 2021

sửa lại câu b

Nếu e={1;3;5;7;9} thì a có 8 cách chọn; b có 8 cách chọn; c có 7 cách chọn; d có 6 cách chọn

Vậy có 8.8.7.6.5=13440 số thỏa mãn đề bài

Xin lỗi bạn nhé

8 tháng 7 2021

a, Giả sử số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0\right)\)

- Chọn a có 9 cách.

- Chọn b, c, d, e có \(A^4_9\) cách

⇒ Có: \(9.A^4_9=27216\) (số)

b, Gọi số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0,e\in\left\{1,3,5,7,9\right\}\right)\)

- Chọn e có 5 cách.

- Chọn a có 8 cách.

- Chọn b, c, d có \(A^3_8\) cách.

⇒ Có \(5.8.A^3_8=13440\) (số)

10 tháng 4 2017

Có bao nhiêu số tự nhiên có tính chất:

a. Là số chẵn và có hai chữ số (không nhất thiết khác nhau).

KQ: \(5\cdot9=45\) (số)

b. Là số lẻ và có hai chữ số (không nhất thiết khác nhau).

KQ: \(5\cdot9=45\) (số)

c. Là số lẻ và có hai chữ số khác nhau.

KQ: \(5\cdot8=40\) (số)

d. Là số chẵn và có hai chữ số khác nhau.

KQ: \(9+4\cdot8=41\) (số)

23 tháng 8 2021

a, Có \(5!=120\) số tự nhiên thỏa mãn yêu cầu bài toán.

b, Số có dạng \(\overline{abcde}\).

e có 3 cách chọn.

a có 4 cách chọn.

b có 3 cách chọn.

c có 2 cách chọn.

d có 1 cách chọn.

\(\Rightarrow\) Có \(3.4.3.2.1=72\) số tự nhiên thỏa mãn yêu cầu bài toán.

8 tháng 8 2018

Đáp án C

NV
24 tháng 7 2021

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

24 tháng 7 2021

Thanks ạ