K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

3*4*4*4*4*4=3072 9 số

b)2*4*4*4*4*4=2048 số

20 tháng 10 2016

gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )

f có 3 cách chọn

a có 5 cách chọn lọc

b;c;d;e đều có 6 cách chọn

 

=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán

b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )

f=0,5 => f có 2 cách chọn

a có 5 cách chọn

b;c;d;e đều có 6 cách chọn

=> có 2*5*6*6*6*6 = 12960

16 tháng 10 2016

1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))

*  ta có h là :

        h= mn 

           trong đó tập hợp mn là {0,1}

               => có 2 trường hợp xảy ra 

                (m,n)=(1,0) hoặc (0,1)

*  ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}

    a có 9 cách chọn 

b có 8 cách chọn 

c có 7 cách chọn 

e có 6 cách chọn 

vậy có 9*8*7*6=3024 số

 *ta  phải loại trường hợp h  đứng đầu và có dạng 01

 trường hợp h  đứng đầu và có dạng 01 có số cách chọn là :

a có 1 cách chọn  là h

b có 8 cách 

c có 7 cách 

e có 6 cách 

=>  có 1*8*7*6=336 số 

 vậy số tự nhiên theo yêu cầu đề bài có tổng cộng

3024 - 332688 số 

0 chắc

 

 

 

20 tháng 4 2016

Từ giả thiết ta có hệ phương trình : \(\begin{cases}\tan A.\tan B=6\\\tan A.\tan C=3\end{cases}\)

Mặt khác, ta cũng có : \(-\tan B=\tan\left(A+C\right)=\frac{\tan A+\tan C}{1-\tan A.\tan C}=\frac{\tan A+\tan C}{1-3}=-\frac{1}{2}\left(\tan A+\tan C\right)\)

\(\Leftrightarrow2\tan B=\tan A+\tan C\)

\(\Leftrightarrow2\tan A\tan B=1\tan^2A+\tan A.\tan C\)

\(\Leftrightarrow2.6=2\tan^2A+3\)

\(\Leftrightarrow\tan^2A=9\)

Theo giả thiết : \(\tan A\tan B=6>0\)

                         \(\tan A\tan C=3>0\)

Cho nên \(\tan A>0,\tan B>0,\tan C>0\)

Suy ra \(\tan A=3,\tan B=2,\tan C=1\)

Điều đó chứng tỏ \(\tan A,\tan B,\tan C\) lập thành cấp số cộng có công sai d = 1

NV
7 tháng 10 2020

Ứng với bộ 3 số phân biệt, có đúng 1 cách xếp thứ tự chúng từ nhỏ đến lớn

Trong các cặp số lẻ, có 4 cặp lẻ liền nhau (chỉ có 1 cách chọn b đứng giữa) là (1;3); (3;5); (5;7); (7;9)

Có 3 cặp cách nhau 4 đơn vị (có 3 cách chọn b đứng giữa) là (1;5); (3;7); (5;9)

Có 2 cặp lẻ sao cho có 5 cách chọn b đứng giữa (1;7); (3;9)

Có 1 cặp lẻ sao cho có 7 cách chọn b đứng giữa (1;9)

Vậy có: \(4.1+3.3+2.5+1.7=30\) số thỏa mãn