Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi các kích thước hìh chữ nhật là x, y, z thỳ x, y, z > 0 vs x + y + z = k (ko đổi). Áp dụng bất đẳng thức Cô-si cho ba số dương ta có:
\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{k}{3}\)
Do đó: \(\text{V}=xyz\le\left(\frac{k}{3}\right)^3\)(ko đổi).
Vậy: V đạt giá trị lớn nhất khj và chỉ khi BĐT này trở thành đẳng thức hay là x = y = z, tức là khi hình chữ nhật trở thành hình lập phương.
b) Gọi 3 kích thước của hình hộp là x, y, z (ĐK)
Áp dụng bất đẳng thức Cô - si cho 3 số dương ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
Từ đây ta có :
x + y + z nhỏ nhất là = \(3\sqrt[3]{xyz}\)
Bất đẳng thức Cô - si xảy ra dấu "=" khi : x = y = z.
Mọi người ko cần giúp mk nữa đâu vì mk làm được rùi nha !
Tham khảo Bất đẳng thức Côsi ( Cauchy ) - ToanHoc.org
\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)
Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng
- Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)
- Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
Áp dụng BĐT trên , ta được : \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)
\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)
- Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)
Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\)
hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)
Bạn tự xét dấu đẳng thức nhé!
Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath
Ban jtrar My làm òi nhé !
Bạn tham khảo tại đây :
Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath
~ Ủng hộ nhé
Đặt \(x=a;\frac{1}{y}=b\Rightarrow a,b>0;a^2+b^2=1\). Quy về tìm Min \(A=ab+\frac{1}{ab}\)
Ta có: \(A=\left(4ab+\frac{1}{ab}\right)-3ab\ge2\sqrt{4ab.\frac{1}{ab}}-\frac{3}{2}\left(a^2+b^2\right)=4-\frac{3}{2}=\frac{5}{2}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}4ab=\frac{1}{ab}\\a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}2ab=1\\a=b\end{cases}}\Rightarrow a=b=\frac{1}{\sqrt{2}}\) (thỏa mãn \(a^2+b^2=1\))
\(\Rightarrow x=\frac{1}{\sqrt{2}};y=\sqrt{2}\)
Vậy...
Bất đẳng thức cần chứng minh tương đương: \(\frac{1}{a^4\left(b+1\right)\left(c+1\right)}+\frac{1}{b^4\left(c+1\right)\left(a+1\right)}+\frac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta đưa BĐT cần chứng minh về dạng \(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\frac{3}{4}\)
Áp dụng BĐT AM - GM, ta được:\(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y+1}{8}+\frac{z+1}{8}\ge\frac{3}{4}x\)
Tương tự: \(\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z+1}{8}+\frac{x+1}{8}\ge\frac{3}{4}y\); \(\frac{z^3}{\left(x+1\right)\left(y+1\right)}+\frac{x+1}{8}+\frac{y+1}{8}\ge\frac{3}{4}z\)
Cộng theo vế của 3 BĐT trên, ta được: \(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}+\)\(\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}\)\(\ge\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{1}{2}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1