\(y=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}<\frac{1}{3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Kết quả...

17 tháng 4 2020

                                                                                                                                                                                                                  

đọc tiếp...

8 tháng 4 2018

a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)

\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)

\(=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)

\(=\frac{16+4+1}{64}\)

\(=\frac{21}{64}< \frac{1}{3}\)(đpcm)

4 tháng 4 2018

Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

\(2A+A=\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

\(3A=1-\frac{1}{2^6}\)

\(3A=\frac{2^6-1}{2^6}\)

\(A=\frac{\frac{2^6-1}{2^6}}{3}< \frac{1}{3}\) 

Vậy \(A< 3\)

Chúc bạn học tốt ~ 

4 tháng 4 2018

Bạn Phùng Minh Quân ơi<3 cơ mà

28 tháng 3 2018

Ta có 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64

= ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 -  1/64)

= 1/4 + 1/16 + 1/64 

= 16 + 4 + 1 /64

= 21/64 < 21/63 = 1/3 

Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3 ( đpcm ) Chúc bn hok tốt  . k mik nha