K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Giải phương trình chứ chứng minh cái gì

\(\frac{1}{2x-2006}+\frac{1}{3-2007x}+\frac{1}{2006x+2005}=\frac{1}{x+2}\)

\(\Leftrightarrow\left(\frac{1}{2x-2006}-\frac{1}{x+2}\right)+\left(\frac{1}{3-2007x}+\frac{1}{2006x+2005}\right)=0\)

\(\Leftrightarrow\frac{x-2008}{\left(2x-2006\right)\left(x+2\right)}+\frac{x-2008}{\left(3-2007x\right)\left(2006x-2005\right)}=0\)

\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{\left(2x-2006\right)\left(x+2\right)}+\frac{1}{\left(3-2007x\right)\left(2006x-2005\right)}\right)=0\)

\(\Leftrightarrow\left(x-2008\right)\left(2008x-1\right)\left(2005x+2003\right)=0\)

\(\Leftrightarrow x=2008;x=\frac{1}{2008};x=-\frac{2003}{2005}\)

31 tháng 3 2015

Trừ cả 2 vế cho 7 ta được:

\(\frac{x^2+2006x-1}{2006}-1+\frac{x^2+2006x-2}{2005}-1+...+\frac{x^2+2006x-7}{2000}-1\)

\(=\frac{x^2+2006x-8}{1999}-1+...+\frac{x^2+2006x-14}{1993}-1\)

=>  \(\frac{x^2+2006x-2007}{2006}+\frac{x^2+2006x-2007}{2005}+...+\frac{x^2+2006x-2007}{2000}=\frac{x^2+2006x-2007}{1999}+...+\frac{x^2+2006x-2007}{1993}\)

=> \(\left(x^2+2006x-2007\right)\left(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}-...-\frac{1}{1993}\right)=0\)

=> x2 + 2006x -2007 = 0.  Vì \(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}<\frac{1}{1999}+...+\frac{1}{1993}\Rightarrow\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}+...+\frac{1}{1993}<0\)

=>  x2 + 2007x- x - 2007 = 0 => (x - 1)(x + 2007) = 0 => x = 1 hoặc x = -2007

Vậy pt có 2 nghiêm x = 1 ; -2007

1 tháng 4 2015

mình sửa lại chút sai xót bài giải trên: nhận xét 1/2006+...+ 1/2000-1/1999-...- 1/993 < 0 nhé!  sửa dấu + thành dấu - 

9 tháng 3 2015

Thay 2006=xyz

Ta có : 

\(\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{zx+z+1}\)

\(=>\frac{x^2yz}{xy\left(zx+z+1\right)}+\frac{y}{y\left(zx+z+1\right)}+\frac{z}{zx+x+1}\)

=> \(\frac{xz}{zx+z+1}+\frac{1}{zx+z+1}+\frac{z}{zx+x+1}\)= 1(điều phải chứng minh)

 

26 tháng 11 2017

Ta có: \(A=\frac{2006x}{xy+2006x+2006}+\frac{y}{yz+y+2006}\) \(+\frac{z}{zx+z+1}\)

\(=\frac{2006xz}{xyz+2006zx+2006z}+\frac{y}{yz+y+xyz}\) \(+\frac{z}{zx+z+1}\)

\(=\frac{2016xz}{2016\left(1+zx+z\right)}+\frac{y}{y\left(z+1+xz\right)}\) \(+\frac{z}{zx+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\) \(=\frac{xz+z+1}{xz+z+1}=1\)

=> đpcm

11 tháng 12 2015

Ta có: xyz=2006

Đặt tổng (đề) trên là A ( phân số thứ nhất tử là 2006x nhé)

=> \(A=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+1+z}{xz+z+1}=1\)

=> A = 1 (đpcm).

 

5 tháng 4 2020

a, Làm

\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)

<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)

<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

<=> x+2021=0

<=> x=-2021

Kl:......................

b, Làmmmmm

\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)

<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)

<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)

<=> x=2006

Kl:..............

29 tháng 3 2020
https://i.imgur.com/xG3Mq3b.jpg