\(n^2+4n+3\) chia hết cho 8 với n lẻ (n thuộc Z)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

giups mik ik

2 tháng 11 2017

a, A= (n+2)^2 + 1

Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5

=> A ko chia hết cho 8

b, n lẻ nên n có dạng 2k+1(k thuộc N)

<=> 5^n = 5^2k+1= = 5^2k . 5 =  (4+1)^2k  .  5  =  (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1

=> B = 5^n - 1 chia hết cho 4

28 tháng 1 2016

Đay là một bài Toán khó và hay đấy Khuất Tuấn Anh ạ 

28 tháng 1 2016

Nếu ở trên 

olm-logo.png không ai giúp được thì bạn hãy lên hoc24.vn nhé Khuất Tuấn Anh

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

1 tháng 12 2015

Sua de 1 chuc A=n2+4a-5 khong chia het cho 8 voi moi n le  nhe !

Với n=0 =>A(n)=0 chia hết cho 8 với n lẻ  

Giả sử A(n) chia hết cho 8 với n=2k+1 nghĩa là:  

A(k)=(2k+1)^2+4*(2k+1)-5 chia hết cho 8  

Ta cần chứng minh A(n) chia hết cho 8 với n=2k+3  

Ta có: A(2k+3)=(2k+3)^2+4(2k+3)-5  

= 4k^2+12k+9+8k+12-5  

= (4k^2+4k+1)+(8k+4)-5+8k+16  

= (2k+1)^2+4(2k+1)-5+8(k+2)  

= A(2k+1)+8(k+2) chia hết cho 8  

Vậy theo quy tắc quy nạp thì :

A(n)=n^2+4n-5 chia hết cho 8 với n lẻ 

21 tháng 7 2016

n2+4n-8 chia hết cho n+3

=>n2+3n+n+3-11 chia hết cho n+3

=>n(n+3)+(n+3)-11 chia hết cho n+3

=>(n+1)(n+3)-11 chia hết cho n+3

Mà (n+1)(n+3) chia hết cho n+3

=>11 chia hết cho n+3

=>n+3\(\inƯ\left(11\right)\)

=>n+3\(\in\left\{-11;-1;1;11\right\}\)

=>n\(\in\left\{-14;-4;-2;8\right\}\)

22 tháng 7 2016

n2+4n-8 chia hết cho n+3

=>n2+3n+n+3-11 chia hết cho n+3

=>n(n+3)+(n+3)-11 chia hết cho n+3

=>(n+1)(n+3)-11 chia hết cho n+3

Mà (n+1)(n+3) chia hết cho n+3

=>11 chia hết cho n+3

=>n+3$\inƯ\left(11\right)$∈Ư(11)

=>n+3$\in\left\{-11;-1;1;11\right\}$∈{−11;−1;1;11}

=>n$\in\left\{-14;-4;-2;8\right\}$

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)