K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Chỗ cuối kia phải là +2 chứ bạn ??!

7 tháng 4 2017

me nghĩ đề sai

=> đề sai ,thử thay x=1/3;y=1=> P<0

25 tháng 7 2019

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

25 tháng 7 2019

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

25 tháng 7 2019

a) 

Đặt \(A=9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x+1+1\)

\(=\left(3x+1\right)^2+1\)

Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)

Hay \(A\ge1>0;\forall x\)

Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức

25 tháng 7 2019

\(a,9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x.1+1^2+1\)

\(=\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

\(\Rightarrow9x^2-6x+2>0\forall x\)

\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

\(\Rightarrow x^2+x+1>0\forall x\)

19 tháng 8 2018

\(2x^2+2y^2-2xy-4x-4y+8\)

\(=x^2-2xy+y^2+x^2-4x+y^2-4y+8\)

\(=\left(x-y\right)^2+x^2-4x+4+y^2-4x+4\)

\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\)

\(\RightarrowĐPCM\)

Y
7 tháng 5 2019

\(9x^2y^2+y^2-6xy-2y+2\)

\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)

\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)

27 tháng 7 2018

\(A=\left(5x-2y\right)\left(5x+2y\right)\)

\(A=\left(5x\right)^2-\left(2y\right)^2\)

\(A=25x^2-4y^2\)

\(A=25.\left(-2\right)^2-4\left(-10\right)^2\)

\(A=25.4-4.100\)

\(A=100-400\)

\(A=300\)

\(B=\left(2x-5\right)\left(4x^2+10x+25\right)\)

\(B=\left(2x\right)^3-5^3\)

\(B=8x^3-125\)

\(B=8.8-125\)

\(B=64-125\)

\(B=-61\)

\(C=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

\(C=\left(3x\right)^2+\left(2y\right)^2\)

\(C=9x^2+4y^2\)

\(C=9\left(-1\right)^2+4\left(\dfrac{1}{2}\right)^2\)

\(C=9+4.\dfrac{1}{4}\)

\(C=9+1\)

\(C=10\)

1 tháng 8 2019

\(G=10x^2+2y^2+2z^2-6xy+2yz\)

\(=9x^2-6xy+y^2+y^2+2yz+z^2+z^2+x^2\)

\(=\left(3x-y\right)^2+\left(y+z\right)^2+x^2+z^2\ge0\forall x;y;z\)

\(\Rightarrow G\) luôn dương \(\forall x;y;z\) (đpcm)

1 tháng 8 2019

Cái bn này giống link nè bn ưi https://olm.vn/hoi-dap/detail/81727811938.html

(Nhưng mk khác một chỗ là phần cuối)

Mk sửa lun nhé 

Thay cuối là 

G luôn dương chỗ \(\forall x;y;z\left(đpcm\right)\)

7 tháng 12 2018

a)\(M=\frac{y^4+1}{x^2y^4+2y^4+x^2+2}\)

\(M=\frac{y^4+1}{y^4\left(x^2+2\right)+\left(x^2+2\right)}\)

\(M=\frac{y^4+1}{\left(y^4+1\right)\left(x^2+2\right)}\)

\(M=\frac{1}{\left(x^2+2\right)}\left(y^4+1\ne0\right)\)

b) M<1 thì phải~

Ta có: \(x^2\ge0\forall x\Rightarrow x^2+2\ge2\forall x\)

\(\Rightarrow\frac{1}{x^2+2}\le\frac{1}{2}< 1\)

\(\Rightarrow M< 1\)

   đpcm

Ta có: \(M\le\frac{1}{2}\)( ý b)

\(M=\frac{1}{2}\Leftrightarrow x^2+2=2\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy \(M_{max}=\frac{1}{2}\Leftrightarrow x=0\)

Tham khảo nhé~

7 tháng 12 2018

Với mọi x; y thì phân thức M đều xác định ( vì mẫu lớn hơn 0 )

a) \(M=\frac{y^4+1}{x^2y^4+2y^4+x^2+2}\)

\(M=\frac{y^4+1}{y^4\left(x^2+2\right)+\left(x^2+2\right)}\)

\(M=\frac{y^4+1}{\left(x^2+2\right)\left(y^4+1\right)}\)

\(M=\frac{1}{x^2+2}\)

b) *đề phải là c/m M luôn bé hơn 1*

Dễ thấy \(x^2+2>1\forall x\)

\(\Rightarrow M< 1\forall x;y\) ( vì tử số bé hơn mẫu số )

c) \(M=\frac{1}{x^2+2}\)

Vì \(x^2\ge0\forall x\)

\(\Rightarrow M\le\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy Mmax = 1/2 khi và chỉ khi x = 0

12 tháng 10 2019

\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)

    \(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)

    \(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)

\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)

    \(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)

    \(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).