K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

M.N ui, Trang này hiện nay đang bị lỗi rồi T-T, điển hình như các lỗi sau : 

- Vào bạn bè thì không thấy ai đang onl cả nhưng sự thật là rất nhiều người online 

- Phần thông báo mặc dù đã xem rồi nhưng thông báo vẫn hiện 

- Vào trang cá nhân thì chỉ có hình bông hoa 

Mong Admin mau sửa lỗi để cho A.E hài lòng, ngoài ra cũng không làm mất uy tín của Trang

17 tháng 9 2016

x4-2x3+2x2-2x+1

\(=\left(x-1\right)^4+2\left(x-1\right)^3+2\left(x-1\right)^2\ge0\) (đpcm)

 

17 tháng 9 2016

còn on ak

10 tháng 6 2017

a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)

b , Ta có : \(4x^2-2x+3\)\(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)

c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)

\(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)

Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)

10 tháng 6 2017

a,-x2+x+1>0 với mọi x mới đúng

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

13 tháng 7 2017

a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)

13 tháng 7 2017

Ta có : 4x2 + 2x + 1

= (2x)2 + 2.2x.\(\frac{1}{2}\)\(\frac{1}{2}+\frac{3}{4}\)

= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Mà : (2x + \(\frac{1}{2}\))\(\ge0\forall x\)

=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)  \(>0\forall x\)

Vậy 4x2 + 2x + 1 \(>0\forall x\)

14 tháng 9 2018

Ta có : \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3\)

\(=\left(x^2+2x+\dfrac{7}{2}-\dfrac{1}{2}\right)\left(x^2+2x+\dfrac{7}{2}+\dfrac{1}{2}\right)+3\)

\(=\left(x^2+2x+\dfrac{7}{2}\right)^2-\dfrac{1}{4}+3\)

\(=\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\)

Do \(\left(x^2+2x+\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\)

\(\Rightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

\(\left(đpcm\right)\)

:D

30 tháng 7 2016

a) = 3( x2 + 2x/6 + 1/9) + 6 -1/3 =3(x+ 1/3)+ 17/3 >0 (dpcm)

8 tháng 10 2016

dễ mà bn

dễ quá hihi

nhưng mà mình

ko ghi được

10 tháng 6 2017

a) \(-2x^2+2x+1>0\)

   \(-\left(2x^2-2x-1\right)>0\)

nhân 2 vế với (-1)=> đổi dấu sao sánh

\(\Leftrightarrow2x^2-2x-1< 0\)

\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)

ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)

=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)

b) \(9x^2-6x+2>0\)

<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)

<=>\(\left(3x-1\right)^2+1>0\)(1)

vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1)  luôn đúng     ( bạn lí giải tương tự như trên nha)

c)\(-4x^2-4x-2< 0\)

\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)

nhân 2 vế với (-1)=> đổi dấu so sánh 

\(4x^2+4x+2>0\)

\(\Leftrightarrow\left(2x+1\right)^2+1>0\)

lí giải tương tự như trên

=> đpcm

10 tháng 6 2017

Câu a sai đề rồi cậu ơi