\(n^5-3n^3+4n:120\). 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

a) Vì n lẻ nên n có dạng 2k + 1

\(=>A=\left(2k+1\right)^2+4\left(2k+1\right)+3\)

\(=4k^2+4k+1+8k+4+3\)

\(=4k^2+12k+8=4k\left(k+3k\right)+8\)

Vì k lẻ nên k +3k lẻ \(=>k+3k⋮2=>4k\left(k+3k\right)⋮8=>4k\left(k+3k\right)+8⋮8\)

21 tháng 7 2019

b)\(A=n^3+3n^2-n-3\)

\(=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ nên n- 1 và n + 1 là 2 số chẵn liên tiếp , trong đó có 1 số chia hết cho 4 số còn lại chia hết cho 2

\(=>\left(n-1\right)\left(n+1\right)⋮8\)

Lại có \(n+3⋮2\)(vì n lẻ) nên \(A=n^3+3n^2-n-3⋮16\)(1)

Vì n là số nguyên nên n có dạng 3k , 3k+1 , 3k-1

Thế vào A bạn chứng minh đc số đó chia hết cho 3 mà theo (1) nó chia hết cho 16 nên A chia hết cho 48

17 tháng 11 2017

Ta có :n5_ 5n3+4n

=n(n4-5n2+4)=n(n4-4n2-n2+4)=n(n2(n2-4)-(n2-4))

=n(n2_ 4)(n2-1)=(n-2)(n-1)n(n+1)(n+2)

Vì tích trên là tích của 5 số tự nhiên liên tiếp nên tích này chia hết cho 3,5,8 . Mà 3,5 và 8 nguên tố cùng nhau và 3*5*8=120

⇔(n-2)(n-1)n(n+1)(n+2) ⋮ 120 ∀ n ϵ N⇔n5-5n3+4n⋮120 ∀ n ϵ N.

25 tháng 8 2018

n^3+23n=n(n^2+23)=n(n^2-1)+24n

                                 =(n-1)n(n+1)+24n

Vi (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên tồn tại 1 bội của 2, 1 bội của 3.

Mà (2,3)=1

Suy ra (n-1)n(n+1) chia hết cho 2*3=6

Mà 24n chia hết cho 6 ( do 24 chia hết cho 6)

Suy ra đccm

25 tháng 8 2018

\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\))

Vì (n-1)n(n+1) là tích của ba số tự nhiên liên tiếp nên tồn tại 1 bội của, 1 bội của 3

Mà ƯC(2,3)=1

Suy ra n^3-n chia hết cho 2*3=6

25 tháng 8 2018

Ta có \(n^3-n=n.\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)

Vì \(n-1;n;n+1\)là 3 số nguyên liên tiếp 

Suy ra \(\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3

Mặt khác\(n-1;n;n+1\)là 3 số nguyên liên tiếp suy ra có ít nhất một số chẵn

Do đó \(\left(n-1\right).n.\left(n+1\right)⋮2\)

Vì \(\text{Ư}CLN\left(2;3\right)=1\)suy ra \(\left(n-1\right).n.\left(n+1\right)⋮6\)

Khi đó \(n^3-n⋮6\)

Vậy....

\(\left(4n+3\right)^2-25\)

\(=\left(4n+3\right)^2-5^2\)

\(=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)\)

12 tháng 7 2016

xl chia hết cho 8

29 tháng 7 2019

ta có : M = 34n+4-43n+3 = 34.(n+1) - 43.(n+1)= 81n+1 -64n+1= (81 -64)n+1=17n+1 ⋮ 17 với mọi n

vậy đpcm