K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Dễ thấy với \(x=2\) ta có VT > VP.

Bạn xem lại đề.

21 tháng 8 2019

ez

\(3\left(x^2-\frac{1}{x^2}\right)< 2\left(x^3-\frac{1}{x^3}\right)\)

\(\Leftrightarrow3\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)-2\left(x-\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}+1\right)< 0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)\left[3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)\right]< 0\)

Do \(x>1\Leftrightarrow x^2>1\Leftrightarrow x^2-1>0\)

\(\Rightarrow x-\frac{1}{x}=\frac{x^2-1}{x}>0\forall x>1\)

\(pt\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+2+\frac{1}{x^2}-1\right)< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left[\left(x+\frac{1}{x}\right)^2-1\right]< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x+\frac{1}{x}\right)^2+2< 0\)

Đặt \(x+\frac{1}{x}=a\)( \(a>2\) )

\(pt\Leftrightarrow3a-2a^2+2< 0\)

\(\Leftrightarrow2a^2-3a-2>0\)

\(\Leftrightarrow2\left(a^2-\frac{3}{2}a-1\right)>0\)

\(\Leftrightarrow2\left(a^2-2\cdot a\cdot\frac{3}{4}+\frac{9}{16}-\frac{25}{16}\right)>0\)

\(\Leftrightarrow2\left[\left(a-\frac{3}{4}\right)^2-\frac{25}{16}\right]\)

\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2-\frac{25}{8}>0\)

\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>\frac{25}{8}\)

Ta có \(a>2\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>2\left(2-\frac{3}{4}\right)^2=\frac{25}{8}\)( luôn đúng )

Vậy ta có đpcm.

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

25 tháng 9 2016

bài này hả chịu thui

bik làm sao dc 

để nhớ lại đã

25 tháng 9 2016

bn ơi bn viết

chữ nhỏ quá đó 

bn ấn vào chữ x2

à bn mình nhìn rõ

nhưng có chữ 

ko đọc được

30 tháng 5 2020

a, Thay \(m=-3\)vào phương trình ta có :

\(x^2+x\left(m-1\right)-\left(2m+3\right)=0\)

\(< =>x^2-4x+3=0\)

Ta có : \(\Delta=\left(-4\right)^2-4.3=16-12=4;\sqrt{\Delta}=\sqrt{4}=2\)

\(x_1=\frac{4+2}{2}=3\)\(;\)\(x_2=\frac{4-2}{2}=1\)

nên tập nghiệm của phương trình trên là \(\left\{1;3\right\}\)

b, Ta có : \(\Delta=\left(m-1\right)^2+4\left(2m+3\right)\ge0\)

\(=m^2-2m+1+8m+12\ge0\)

\(=m\left(m-2\right)+8\left(m-2\right)+29\ge0\)

\(=\left(m+8\right)\left(m-2\right)+29\ge0\)

\(=m^2+6m+13\ge0\)( đến đây thì chịu r :) )

c, theo vi ét ta có \(x_1+x_2=-\frac{b}{a}\)

\(< =>x_1+x_2=\frac{-m+1}{2}=7\)

\(< =>-m+1=14\)

\(< =>-m=13< =>m=-13\)

7 tháng 8 2017

=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx

>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)

7 tháng 8 2017

=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx

>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)