\(a^3-6a^2-7a+12\) luôn chia hết cho 6

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 1 2021

ta có 

\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)

do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6

mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6

vậy A chia hết cho 6

9 tháng 10 2017

\(A=a^3-6a^2-7a+12\)

\(=\left(a^3-a\right)-6a^2-6a+12\)

\(=a\left(a^2-1\right)-6\left(a^2+a-2\right)\)

\(=\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\)

Ta thấy \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(a-1\right)a\left(a+1\right)⋮2;3\)

\(ƯCLN\left(2;3\right)=1\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)(1)

Lại có \(6\left(a^2+a-2\right)⋮6\forall a\in Z\)(2)

Từ (1);(2) \(\Rightarrow\left[\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\right]⋮6\forall a\in Z\)

Hay \(A⋮6\forall a\in Z\)(đpcm)

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

12 tháng 8 2020

\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m

\(a^4+6a^3+11a^2+6a\) chia hết cho 24

\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)

\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

Ta nhận thấy đây là tích của 4 số TN liên tiếp

Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3

=> tích của 4 số TN liên tiếp chia hết cho 3x8=24

Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)

30 tháng 1 2018

a) Ta có \(A=a^3-6a^2-7a+12=\left(a-1\right)\left(a^2-5a+12\right)=\left(a-1\right)\left(a^2-5a+6\right)+6\left(a-1\right)\)

=\(\left(a-1\right)\left(a-2\right)\left(a-3\right)+6\left(a-1\right)\)

Mà (a-1)(a-2)(a-3) là tích 3 số nguyên liên tiếp => cúng chia hết cho 6 => ... chia hết cho 6(ĐPCM)

^_^

30 tháng 1 2018

Có ai kg giúp mình bài này với

30 tháng 6 2016

Gán x = 1;2;3 lần lượt ta có:

  \(F\left(1\right)=a+b+c\)chia hết cho m. (1)

  \(F\left(2\right)=a^2+2b+c\)chia hết cho m. (2)

  \(F\left(3\right)=a^3+3b+c\)chia hết cho m. (3)

Từ (1) và (2) => \(\left(a^2+2b+c\right)-\left(a+b+c\right)=a\left(a-1\right)+b\)chia hết cho m. (4)

Từ (2) và (3) => \(\left(a^3+3b+c\right)-\left(a^2+2b+c\right)=a^2\left(a-1\right)+b\)chia hết cho m. (5)

Từ (4) và (5) => \(\left[a^2\left(a-1\right)+b\right]-\left[a\left(a-1\right)+b\right]=a\left(a-1\right)^2\)chia hết cho m.

Thay vào (4) => b chia hết cho m

=> b2  chia hết cho m. ĐPCM

29 tháng 6 2016

sao phần đầu toán toán lớp 8,9 thế ?? e lớp 5 chẳng trloi của ai trên đầu cả !! nhưng e chúc các a chị nhận đc nhìu câu trloi hay nhé !! ai ngang qua thả cho e nha ! e cám ơn rất nhìu ạ !

8 tháng 11 2018

Vi a la so chan nen a co dang 2k nen : a3+6a2+8a

= 8k3+24k2+16k = 8.k.(k2+3k+2)=8k(k+1)(k+2)

vi k , k+1 , k+2 la 3 so lien tiep nen k.(k+1).(k+2) ⋮ 6

=> 8k(k+1)(k+2) ⋮ 6.8=48 ( dpcm)