K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Ta có :

1/n - 1/n + k

=  n + k - n / n . ( n + k ) 

= k / n . ( n + k )

8 tháng 9 2017

Ta có    \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\)      (dpcm)

AH
Akai Haruma
Giáo viên
13 tháng 6 2020

Lời giải:

$\frac{k}{n(n+k)}=\frac{(n+k)-n}{n(n+k)}=\frac{n+k}{n(n+k)}-\frac{n}{n(n+k)}$

$=\frac{1}{n}-\frac{1}{n+k}$

Ta có đpcm.

24 tháng 3 2016

Ta có :

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n.\left(n+k\right)}\)

Vậy \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)

24 tháng 3 2016

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

1 tháng 10 2015

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

=> điều phải chứng minh

1 tháng 10 2015

\(\frac{k}{n\left(n+k\right)}=\frac{1}{n+k}\)

Vì n(n+k) chia hết cho cả n và n  +  k nên ta lấy n(n+k) là mẫu chung

\(\frac{1}{n}=\frac{1.\left(n+k\right)}{n.\left(n+k\right)}=\frac{n+k}{n\left(n+k\right)}\) ; \(\frac{1}{n+k}=\frac{1.n}{n\left(n+k\right)}=\frac{n}{n\left(n+k\right)}\) (nhân cả tử phân số này cho phân số kia)

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k+n-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

20 tháng 4 2018

\(\frac{1}{n}-\frac{1}{n-k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}\)

\(=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

Học tốt

10 tháng 3 2017

câu này quen quen

10 tháng 3 2017

là s hả bạn?

8 tháng 9 2017

Theo bài ra ta có :

1/n - 1/n + k 

= n + k - n / n.( n + k )

= k / n.( n + k )