K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

banh

15 tháng 3 2017

banhdễ quá

haha ha ha

ngốc quá đihehe

9 tháng 5 2023

Đặt A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

3A = 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

4A = ( 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\) ) + ( \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) )

    = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\) 

Đặt B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) 

3B = 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\)

4B = ( 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\) ) + ( 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) )

     = 3 - \(\dfrac{1}{3^{99}}\)

B = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\)

⇒ 4A = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\) - \(\dfrac{100}{3^{100}}\) 

A = \(\dfrac{3}{16}-\dfrac{1}{3^{99}\cdot4^2}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

Vậy A < \(\dfrac{3}{16}\)

24 tháng 4 2017

A= \(\dfrac{1}{3}-\dfrac{2}{3^2}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

3A= 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+.....+\dfrac{99}{3^{98}}\) - \(\dfrac{100}{3^{99}}\)

A + 3A = 1- \(\dfrac{1}{3}+\dfrac{1}{3^2}\) - \(\dfrac{1}{3^3}+....+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)

=> 4A < 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}\) \(\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

Đặt : B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

3B = 3 - 1 + \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}+.....+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)

B + 3B = 3 - \(\dfrac{1}{3^{99}}\)

4B = 3 - \(\dfrac{1}{3^{99}}\) < 3 => B < \(\dfrac{3}{4}\)

=> 4A < \(\dfrac{3}{4}\) => A < \(\dfrac{3}{16}\) ĐPCM

AH
Akai Haruma
Giáo viên
25 tháng 1 2018

Lời giải:

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(A+3A=1+\frac{1-2}{3}+\frac{-2+3}{3^2}+\frac{3-4}{3^3}+\frac{-4+5}{3^4}+...+\frac{99-100}{3^{99}}-\frac{100}{3^{100}}\)

\(4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-.....+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(4A=(1-\frac{1}{3})+(\frac{1}{3^2}-\frac{1}{3^3})+...+(\frac{1}{3^{98}}-\frac{1}{3^{99}})-\frac{100}{3^{100}}\)

\(4A=\frac{2}{3}+\frac{2}{3^3}+...+\frac{2}{3^{99}}-\frac{100}{3^{100}}\)

\(2A=\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{50}{3^{100}}\)

\(18A=3+\frac{1}{3}+...+\frac{1}{3^{97}}-\frac{450}{3^{100}}\)

\(\Rightarrow 18A-2A=3-\frac{1}{3^{99}}-\frac{450}{3^{100}}+\frac{50}{3^{100}}=3-\frac{1}{3^{99}}-\frac{400}{3^{100}}\)

\(\Leftrightarrow 16A=3-\frac{1}{3^{99}}-\frac{400}{3^{100}}<3\Rightarrow A< \frac{3}{16}\)

2 tháng 5 2018

Đặt A=1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100

3A=1-2/3+3/3^2-4/3^3+...+99/3^98-100/3^99

3A+A=1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99-100/3^100

<1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99

Đặt S=1-1/3+1/3^2-1/3^3+1/3^4-...+1/3^98-1/3^99

3S=3-1+1/3-1/3^2+1/3^3-...-1/3^98

3S+S=3-1/3^99

S=(3-1/3^99) :4

S=3/4-1/4.3^99

\(\Rightarrow\)4A<3/4-1/4.3^99

\(\Rightarrow\)A<(3/4-1/4.3^99):4

\(\Rightarrow\)A<3/16-1/16.3^99<3/16

Vậy 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16

6 tháng 5 2017

M = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

3M = \(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+....+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

M+3M = \(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

4M < \(1-\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

Đặt A = \(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

3A = \(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+......+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)

A+3A=\(3-\dfrac{1}{3^{99}}\)

4A = \(3-\dfrac{1}{3^{99}}< 3=>A< \dfrac{3}{4}\)

=> 4M < \(\dfrac{3}{4}\) => M < \(\dfrac{3}{16}\) ĐPCM

6 tháng 5 2017

Đặt :

\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-.............+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

\(3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...............+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

\(3A+A=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...............+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)\)\(+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-...............+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

\(4A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+..............+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

\(4A< 1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+............+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

Đặt :

\(B=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...........+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

\(3B=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+................+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)

\(3B+B=3-\dfrac{1}{3^{99}}\)

\(4B=3-\dfrac{1}{99}< 3\Rightarrow B< \dfrac{3}{4}\)

\(\Rightarrow4A< \dfrac{3}{4}\Rightarrow A< \dfrac{3}{16}\rightarrowđpcm\)