Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(a^3+b^3+b^3\geq 3ab^2\)
\(a^3+a^3+b^3\geq 3a^2b\)
\(\Rightarrow 3(a^3+b^3)\geq 3ab(a+b)\)
\(\Leftrightarrow 4(a^3+b^3)\geq a^3+b^3+3ab(a+b)=(a+b)^3\)
Tương tự:
\(\left\{\begin{matrix} 4(b^3+c^3)\geq (b+c)^3\\ 4(c^3+a^3)\geq (c+a)^3\end{matrix}\right.\)
Cộng theo vế:
\(8(a^3+b^3+c^3)\geq (a+b)^3+(b+c)^3+(c+a)^3\)
Do đó ta có đpcm
Dấu bằng xảy ra khi a=b=c
Xét : a^3+b^3-ab.(a+b)
= (a+b).(a^2-ab+b^2)-ab.(a+b)
= (a+b).(a^2-2ab+b^2)
= (a+b).(a-b)^2 >= 0 ( vì a;b > 0 )
=> a^3+b^3 >= ab.(a+b)
<=> (a+b)^3 = a^3+b^3+3ab.(a+b) < = a^3+b^3+3a^3+3b^3 = 4a^3+4b^3
Tương tự ........
=> (a+b)^3 + (b+c)^3 + (c+a)^3 < = 8a^3+8b^3+8c^3 = 8.(a^3+b^3+c^3)
=> ĐPCM
Tk mk nha
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:
\(4a^3+4b^3\ge\left(a+b\right)^3\); \(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).
Cộng từng vế 3 bất đẳng thức trên ta được:
\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
=> đpcm.
(a+b+c)(a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
P/s đến đây bạn áp đụng bđt thức bunhi a là ra
(a+b+c) (a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Chứng minh bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Có: \(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(a+b+c\right)^2\) (Bunyakovsky)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
abc = 1 => a^2.b^2.c^2 = 1
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(c+a\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\)
\(=\frac{\left(bc\right)^2}{ab+ac}+\frac{\left(ac\right)^2}{bc+ba}+\frac{\left(ab\right)^2}{ca+cb}\ge\frac{\left(ab+ac+bc\right)^2}{2\left(ab+ac+bc\right)}=\frac{\left(ab+ac+bc\right)}{2}\)
\(\ge\frac{3\sqrt[3]{ab.ac.bc}}{2}\)(Cauchy) \(=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\\frac{bc}{ab+ac}=\frac{ac}{bc+ba}+\frac{ab}{ca+cb}\Leftrightarrow\end{cases}a=b=c}\)
Mà abc=1 <=> a^3 = 1 <=> a=1 => b=c=a=1
https://diendantoanhoc.net/topic/80159-ch%E1%BB%A9ng-minh-frac1a2b3cfrac12a3bcfrac13bb2c-leqslant-frac316/
bạn tham khảo ở đây nhé
Ta biến đổi: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)
Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)
\(=3\left(x+b\right)\left(a-b\right)^2\ge0\)
Tương tự với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)
Ta suy ra đpcm.
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)