\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...........+\frac{1}{n^2}\)với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

Ta có A>1

\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

=> 1<A<2 => A không là số tự nhiên

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

25 tháng 7 2019

Bạn tham khảo nhé!Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

20 tháng 5 2019

gọi A là vế trái của bất đẳng thức trên

Ta có : \(\frac{1}{k^3}< \frac{1}{k^3-k}=\frac{1}{k.\left(k-1\right)\left(k+1\right)}\)

Do đó : A < \(\frac{1}{2^3-2}+\frac{1}{3^3-3}+...+\frac{1}{n^3-n}=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Đặt C = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Ta thấy \(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{2}{\left(n-1\right)n\left(n+1\right)}\)

nên 

C = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{4}-\frac{1}{2n\left(n+1\right)}< \frac{1}{4}\)

Vậy ....