Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là USC của 2n-1 và 3n-2
=> 2n-1 chia hết cho d => 6n-3 chia hết cho d
=> 3n-2 chai hết cho d => 6n-4 chia hết cho d
Nên 6n-3-6n+4=1 chia hết cho d => d=1 => 2n-1 và 3n-2 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{2n-1}{3n-2}\) là phân số tối giản
Gọi d = ƯCLN(n - 5; 3n - 14) (d thuộc N*)
=> n - 5 chia hết cho d; 3n - 14 chia hết cho d
=> 3.(n - 5) chia hết cho d; 3n - 14 chia hết cho d
=> 3n - 15 chia hết cho d; 3n - 14 chia hết cho d
=> (3n - 14) - (3n - 15) chia hết cho d
=> 3n - 14 - 3n + 15 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n - 5; 3n - 14) = 1
=> n - 5/3n - 14 là phân số tối giản (đpcm)
n - 5 = 3 {n-5} = 3n-15
suy ra : 3n-15 : 3n-14 = -1 mà Ước của 1 phân số là 1 với -1 thế nên phân số đó là phân số tối giản
a) Gọi \(d=ƯCLN\left(2n+1;4n+5\right)\)
\(\Leftrightarrow\hept{\begin{cases}2n+1⋮d\\4n+5⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4n+2⋮d\\4n+5⋮d\end{cases}}\)
\(\Leftrightarrow3⋮d\)
Vì \(d\in N;3⋮d\Leftrightarrow d=1;3\)
Ok đề sai!
dfakdfgaewtrywiesfgggggggggggggggguououououououououououououoatuaewbgggggggggggggggggaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhhhhaooooooooooooooooooofhhhhhhhhhhhhhhhhhhoaaaaaaaaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhaoooooooooooooooohffffffoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
- aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))
=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
\(\frac{n-7}{3n-4}=\frac{3n-21}{3n-4}\)
Mà 21 và 4 là 2 số nguyên tố cùng nhau hay 2 số này có ƯCLN là 1 => phân số này tối giản