\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)(do 22>1.2)

          \(\frac{1}{3^2}< \frac{1}{2.3}\)(do 32>2.3)

          ...........................................

           \(\frac{1}{8^2}< \frac{1}{7.8}\)(do 82>7.8)

=> B < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

=> B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
=> B < \(1-\frac{1}{8}< 1\)

=> B < 1

9 tháng 4 2018

Ta có \(\frac{1}{2^2}< \frac{1}{1.2}\)

         \(\frac{1}{3^2}< \frac{1}{2.3}\)

           ....................

           \(\frac{1}{8^2}< \frac{1}{7.8}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{7.8}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}=\frac{7}{8}< 1\left(đpcm\right)\)

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)

24 tháng 7 2020

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)

Cộng vế theo vế 

\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)

\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)

Lại có \(\frac{7}{8}< 1\)

Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

25 tháng 2 2018

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)

Tính giá trị biểu thức :1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30})...
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 

2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}) \)

5. Cho \(M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right);N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

7. \(F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

8. \(G=\left[\frac{\left(6-4\frac{1}{2}\right):0,03}{\left(3\frac{1}{20}-2,65\right).4+\frac{2}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right).\frac{1}{80}}\right]:\frac{49}{60}\)

9. \(H=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)

10. \(I=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{2499}{2500}\)

11. \(k=\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{999}\right)\)

12. \(L=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}...\)(98 thừa số)

13. \(M=-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{3}}}}\)

14. \(N=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}\)

15. \(P=\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)...\left(\frac{1}{2000}-1\right)\left(\frac{1}{2001}-1\right)\)

16. \(Q=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\right):\left(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\right)\)

3
2 tháng 5 2018

\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)

\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)

\(=\frac{2}{4}=\frac{1}{2}\)

\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)

\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)

\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)

\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)

\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\)               \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)

\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\)                         \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)

\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\)                     \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)

\(=\frac{58}{7}-\frac{487}{63}\)                                          \(=\frac{577}{45}-\frac{280}{45}\)

\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\)                             \(=\frac{33}{5}\)

\(P=M-N\)

\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)

\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)

\(\Rightarrow P=\frac{-272}{45}\)

Vậy P = \(\frac{-272}{45}\)

\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)

\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)

\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)

\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)

\(=\frac{3}{8}+\frac{5}{8}=1\)

Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !

9 tháng 2 2018
sao không tự làm một số bài dễ đi

a: \(=\left(-\dfrac{25}{140}+\dfrac{245}{140}+\dfrac{32}{140}\right)\cdot\dfrac{-69}{20}\)

\(=\dfrac{252}{140}\cdot\dfrac{-69}{20}\)

\(=\dfrac{9}{5}\cdot\dfrac{-69}{20}=\dfrac{-621}{100}\)

b: \(=\left(6-2-\dfrac{4}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}=\dfrac{18}{5}\)

c: \(=\left(\dfrac{2}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{34}{24}\cdot\dfrac{-8}{17}=\dfrac{-1}{3}\cdot2=-\dfrac{2}{3}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=1-\frac{1}{8}<1\)

\(\RightarrowĐPCM\)